Close

Simultaneous production of diverse neuronal subtypes during early corticogenesis

Elia Magrinelli, Robin Jan Wagener, Denis Jabaudon

Posted on: 29 August 2018

Preprint posted on 16 July 2018

How does the amazing diversity of cortical neurons emerge during development? A new preprint suggests that during early stages distinct types are simultaneously produced, while later on neuronal production is homogenous and sequential.

Selected by Boyan Bonev

Why is it important?

The cerebral cortex contains many different neuronal subtypes with distinctive morphology, connectivity and gene expression. Abnormal cortical development often translates into prominent neurodevelopmental and neuropsychiatric diseases, which affect different neuronal subtypes. How these neurons are produced in a precise sequence during embryonic development is one of the key questions in developmental neuroscience. Despite intense research in this area, the molecular mechanisms regulating the progression of molecular competence in cortical progenitors and how neuronal subtypes are produced temporally are still not well understood.

What are the key findings?

In this preprint Magrinelli and colleagues examine the fate of simultaneously-born cohorts of neurons at multiple stages during cortical development. To accomplish this, they utilize a high temporal resolution labeling technique, called FlashTag, which they combine with chronic administration of BrdU to distinguish between direct versus indirect neurogenesis. Using this approach, they uncover that at early stages of corticogenesis, there is an unexpected diversity in the molecular identity, laminar position and connectivity of simultaneously-born neurons. Conversely, later during embryonic development, the production of neurons is much more homogenous. Using retrograde labeling, the authors show that molecular differences in early-born neurons are also ultimately translated into laminar fate and connectivity. Finally, the authors suggest that at least some of the molecular diversity is postmitotic, as markers of different subtypes are progressively acquired during differentiation.

Diverse versus homogenous laminar fate and molecular identity of sequentially produced cortical neurons. Reposted from Magrinelli et al., bioRxiv 2018  with permission.

Questions arising

How much molecular diversity is encoded already in neural progenitors versus acquired postmitotically?

What are the molecular mechanisms for the progressive restriction of fate potential during corticogenesis?

What is the contribution of epigenetic modifications and post-transcriptional regulation to lineage specification in the cortex?

 

Related Research

Vitali I., et. al. & Jabaudon D. Progenitor Hyperpolarization Regulates the Sequential Generation of Neuronal Subtypes in the Developing Neocortex.  Cell (2018).

Govindan S. & Jabaudon D. Coupling progenitor and neuronal diversity in the developing neocortex.  FEBS Lett (2017).

Yuzwa SA. et. al., & Miller FD. Developmental Emergence of Adult Neural Stem Cells as Revealed by Single-Cell Transcriptional Profiling.  Cell Rep (2017)

Molyneaux B., Arlotta P., et al. & Macklis J. Neuronal subtype specification in the cerebral cortex.  Nat Rev Neurosci (2007)

Telley, L., et al. Sequential Transcriptional Waves Direct the Differentiation of Newborn Neurons in the Mouse Neocortex. Science 351, 1443–6 (2016).

 

doi: https://doi.org/10.1242/prelights.4575

Read preprint (No Ratings Yet)

Author's response

Elia Magrinelli & Denis Jabaudon shared

Response to Questions Arising:

  1. How much molecular diversity is encoded already in neural progenitors versus acquired postmitotically?
  • Elia Magrinelli (EM): This is a key point for which we don’t have a definitive answer. Using a limited set of molecular markers, we find that neuron type-specific characteristics are progressively implemented rather than present from their differentiation onset on, but differences involving other genes could be present early on just as well. A more comprehensive molecular analysis of simultaneously-born neurons throughout corticogenesis and at sequential stages of their differentiation would be required to answer this question.
  1. What are the molecular mechanisms for the progressive restriction of fate potential during corticogenesis?
  2. What is the contribution of epigenetic modifications and post-transcriptional regulation to lineage specification in the cortex?
  • EM: Well, one of the questions we are interested in in the lab is whether there is indeed a fate restriction, as opposed to “simply” a fate progression, as not much is yet known on this topic in mammals. In Drosophila, the seven-up gene regulates the progressive switch of specific neuroblasts cell autonomously during CNS development (Kanai et al. 2005), but external factors, including non-obviously genetic ones might be involved. We have recently shown for example that progression in the membrane potential of progenitors regulates their fate progression (Vitali et al., 2018). As for epigenetics and posttranscriptional aspects, this is an intense area of research right now. As techniques of tagging and isolating specific and coordinated subsets of differentiating neurons and progenitors become more efficient and available, epigenetic investigations on the subject could provide interesting outcomes.

 

Response to additional questions

  1. Why did you pursue this study?
  • EMTime dependency in cortical development is a well-known concept, probably one of the first to be encountered while studying cortical development, although it is still relatively poorly understood in mammals. With FlashTag labeling, we were able to study this process with a high temporal resolution and thus decided to better characterize this process. We observed a substantial difference in the span of laminar distributions in early- vs. late-born neurons, which we thought was interesting because neurons in distinct cortical layers have distinct connectivities, functions and evolutionary histories.
  1. How is your method (i.e. Flashtag) better than existing approaches?
  • EMFlashTag allows specific labeling of isochronic/isocyclic cohorts of M-phase progenitors and their progeny. It is based on the fact that during cell division, that in neuronal birth, ventricular zone progenitors are transiently in contact with the ventricles, where FlashTag is injected and from where it diffuses inside cells (Telley et al. 2016, Govindan et al. 2018). This strategy thus allows to focus on the progeny of a population derived from a highly homogeneous population of progenitors. Nucleotide substitute pulse-labeling also has a high temporal resolution when in combination (Takahashi et al. 1999), but does not distinguish between distinct types of progenitors, rendering lineage analyses difficult.
  1. To what extend can the differences in diverse verse homogenous neuronal production can be explained by the switch from direct to indirect neurogenesis?
  • EMIt is actually unclear whether such a switch exists since indirect neurogenesis is present also at early stages of corticogenesis (Vitali et al. 2018, Càrdenas et al. 2018) but generally speaking yes, direct neurogenesis is more prevalent early on. But yes, it is possible that indirect neurogenesis acts to “buffer” stochastic differences in newborn neuron ground states, yielding more homogeneous final populations. Our labeling strategy selects for directly born neurons and depending on how strongly BP contribute to the final population at any given time, we might observe stronger differences between our labelling approach and previous nucleotide substitute pulse-labeling methods.
  1. Primates and humans are characterized by expanded upper cortical layers, do you think that upper-layer production can be less homogenous in those species compared to mice?
  • EMThe data we have on primate (including human) development suggests that expansion of the superficial layers results from an increase in the diversity of intermediate progenitor subtypes, thought to be reflected by the expansion of the outer subventricular zone. Seminal data from the Rakic lab (1974) using tritiated thymidine showed very sharply laminarly delineated populations of neurons following labeling at late embryonic stages (the high temporal resolution here is allowed by long developmental durations), so it seems like we would be getting the same type of results. Inter-areal differences might play a bigger role in species with large brains, which we haven’t examined here.
  1. What is your opinion on intrinsic versus extrinsic mechanisms for the progressive restriction of fate potential in cortical progenitors?
  • EMAgain, in the lab we think at this stage it is safer to talk about progression in fate potential rather than a restriction. The scientific literature contains examples of extrinsic and intrinsic mechanisms and both are likely involved, albeit to different extents at different stages of corticogenesis. With the advent of organoid preparations, it could soon be possible to better tease out this complex field.

 

References:

Kanai MI., et. al. & Hiromi Y. seven-up Controls switching of transcription factors that specify temporal identities of Drosophila neuroblasts.  Dev Cell (2005).

Govindan, S, Oberst, P., and Jabaudon, D. In Vivo Pulse-Labeling of Isochronic Cohorts of Cells in the Central Nervous System Using FlashTag. bioRxiv, 286831 (2018).

Takahashi, T., et al. Sequence of Neuron Origin and Neocortical Laminar Fate: Relation to Cell Cycle of Origin in the Developing Murine Cerebral Wall. J. Neurosci. 19, 10357–71 (1999).

Telley, L., et al. Sequential Transcriptional Waves Direct the Differentiation of Newborn Neurons in the Mouse Neocortex. Science 351, 1443–6 (2016).

Rakic P. Neurons in rhesus monkey visual cortex: Systematic relation between time of origin and eventual disposition. Science (1974)

 

 

 

 

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the developmental biology category:

Specialized signaling centers direct cell fate and spatial organization in a limb organoid model

Evangelia Skoufa, Jixing Zhong, Oliver Kahre, et al.

Selected by 05 September 2024

Ryan Harrison

Developmental Biology

Adult caudal fin shape is imprinted in the embryonic fin fold

Eric Surette, Joan Donahue, Stephanie Robinson, et al.

Selected by 28 August 2024

Isabella Cisneros

Developmental Biology

TAK1 operates at the primary cilium in non-canonical TGFB/BMP signaling to control heart development

Canan Doganli, Daniel A. Baird, Yeasmeen Ali, et al.

Selected by 16 August 2024

Reinier Prosee

Developmental Biology

Also in the neuroscience category:

Triglyceride metabolism controls inflammation and APOE4-associated disease states in microglia

Roxan A. Stephenson, Kory R. Johnson, Linling Cheng, et al.

Selected by 22 August 2024

Gustavo Stelzer, Marcus Oliveira

Biochemistry

Impaired 26S proteasome causes learning and memory deficiency and induces neuroinflammation mediated by NF-κB in mice

Christa C. Huber, Eduardo Callegari, Maria Paez, et al.

Selected by 22 August 2024

Gustavo Stelzer, Marcus Oliveira

Biochemistry

High-fat and high-sucrose diet-induced hypothalamic inflammation shows sex specific features in mice

Gabriela C. De Paula, Rui F. Simões, Alba M. Garcia-Serrano, et al.

Selected by 19 August 2024

Jimeng Li

Neuroscience

preLists in the developmental biology category:

BSDB/GenSoc Spring Meeting 2024

A list of preprints highlighted at the British Society for Developmental Biology and Genetics Society joint Spring meeting 2024 at Warwick, UK.

 



List by Joyce Yu, Katherine Brown

GfE/ DSDB meeting 2024

This preList highlights the preprints discussed at the 2024 joint German and Dutch developmental biology societies meeting that took place in March 2024 in Osnabrück, Germany.

 



List by Joyce Yu

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

2nd Conference of the Visegrád Group Society for Developmental Biology

Preprints from the 2nd Conference of the Visegrád Group Society for Developmental Biology (2-5 September, 2021, Szeged, Hungary)

 



List by Nándor Lipták

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

EMBL Conference: From functional genomics to systems biology

Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020

 



List by Jesus Victorino

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Society for Developmental Biology 79th Annual Meeting

Preprints at SDB 2020

 



List by Irepan Salvador-Martinez, Martin Estermann

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EDBC Alicante 2019

Preprints presented at the European Developmental Biology Congress (EDBC) in Alicante, October 23-26 2019.

 



List by Sergio Menchero et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Young Embryologist Network Conference 2019

Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

 



List by Alex Eve

Pattern formation during development

The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

 



List by Alexa Sadier

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar

Also in the neuroscience category:

Hypothalamus GRC 2024

The Hypothalamus GRC (Gordon Research Conference) 2024 preprint list offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies presented cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.

 



List by Nathalie Krauth

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Young Embryologist Network Conference 2019

Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

 



List by Alex Eve
Close