Close

CLIJ: GPU-accelerated image processing for everyone

Robert Haase, Loic A. Royer, Peter Steinbach, Deborah Schmidt, Alexandr Dibrov, Uwe Schmidt, Martin Weigert, Nicola Maghelli, Pavel Tomancak, Florian Jug, Eugene W. Myers

Posted on: 10 September 2019

Preprint posted on 22 August 2019

Article now published in Nature Methods at http://dx.doi.org/10.1038/s41592-019-0650-1

CLIJ: a tool that overcomes an important bottleneck in the microscopy workflow: it brings accelerated processing speed to everyone, regardless of coding skills.

Selected by Mariana De Niz

Background

 Graphics processing units (GPU) are single-chip processors that allow image processing at unprecedented speed. Aside of being used for 2D data, GPUs are essential for decoding and rendering of 3D animations, and can perform parallel operations on multiple sets of data.

Conversely, central processing units (CPU) are thought of as a computer ‘brain’ and their function is to interpret and control most of the commands from the computer. However, they have important bottlenecks when performing real-time processing or multiple tasks. GPUs help provide significant acceleration when performing multiple operations simultaneously.

Moreover, in modern microscopy platforms, very large amounts of multi-dimensional image data can be generated. An important bottleneck associated with this is significantly reduced speed in image processing and analysis of such data. One way to speed processing which has been recently explored in the context of imaging, including restoration, segmentation and visualization, is to use the parallel processing capacity of GPUs, using specific code for each of the intended tasks (1-6).

The flexible workflows implemented in user-friendly tools such as ImageJ and Fiji, were programmed at a time when GPUs were not widely used, and therefore rely on CPU processing. Because until now GPU-accelerated image processing required programming abilities, perhaps microscopists without such experience have not yet benefitted from the advantages that GPUs provide.

Key development

  • Haase and Royer et al (7) developed CLIJ, a Fiji plugin enabling users to benefit from GPU-accelerated image processing.
  • A key feature of CLIJ is that it does not require any GPU programming skills, nor specialized hardware to be executed.
  • CLIJ complements core ImageJ operations with reprogrammed counterparts that take advantage of OpenCL (an open standard for cross-platform parallel programming) to execute on GPUs.
  • CLIJ offers a wide range of image processing functions for morphological filters, spatial transformations, thresholding, minima/maxima detection, 3D-to-2D projections, and methods of descriptive statistics for quantitative measurements, among others.
  • While the speed-up using GPU may vary depending on the dataset and the processing required, the execution time for image processing on various systems, regardless of whether they were commercial laptops or professional workstations, and regardless of the operating system used, was faster that the counterparts in ImageJ running on the CPU.
  • For the data to be processed on GPUs, they have to be first pushed to GPU memory, and later pulled back to CPU memory.
  • CLIJ is compatible with all programming languages available in ImageJ.
  • CLIJ opens the possibility of real-time analysis for smart microscopy applications.
  • The authors provide a plugin template together with the full open source code of CLIJ and all data and scripts, in order to provide a baseline for other developers.

 

Figure 1. CLIJ facilitates accelerated image processing. (Image reproduced from https://clij.github.io)

Application

  • As a proof of principle, the authors used CLIJ to process a multi-step workflow on data generated with 3D light sheet microscopy, in this case, imaging a Drosophila embryo. This workflow included reduction of background signal using Gaussian filtering, data projection from 3D to 2D, and nuclei counting. The differences on count accuracy using CPU or GPU were not significant. Likewise, the hardware on which CLIJ was used also had little impact on count accuracy. Processing time was reduced by a factor of 15-33 when CLIJ was used on a laptop or a workstation respectively.

 

What I like about this paper

I favour very much open science, and that different tools generated by various labs are designed to make science available and accessible to everyone, be this as affordable hardware, free software, or as tools that help eliminate barriers dividing scientists. CLIJ is a good example of the latter: on one hand, CLIJ enables users with little programming skills to benefit from accelerated image processing (making this step of science more efficient, and therefore offering the possibility of increasing output and complexity of image processing done). On the other hand, Haase and Royer (7) provide in their work very detailed documentation aimed at both, entry-level users, and users with more advanced programming skills to allow them to contribute to this tool in the future. As a microscopist with an interest in image analysis, I found the documentation provided by the authors easy to follow, and the accelerated image processing an enormous advantage to the work I do. A big advantage of CLIJ is also that it might encourage more scientists to engage in methods of image analysis, and workflow complexity, that before they did not consider because the high processing time was a hindrance.  Furthermore, it allows users who only have access to low cost computers to make use of GPU acceleration.

            I like also that the documentation is very complete, as is the author’s website (link to sections I found particularly useful below):

https://clij.github.io

https://clij.github.io/clij-docs/quickTour

https://clij.github.io/clij-docs/faq

https://github.com/clij/clij-docs/blob/master/clij_cheatsheet.pdf

Open questions*

(See bottom of page for author’s answers)

  1. In your discussion, you mention that CLIJ is compatible with smart microscopy, doing real-time processing. Has it been used already, and in what type of operations?
  2. One thing you discuss in the FAQ section, is that you put emphasis on mathematical correctness, consistency, simplicity of code, performance, and similarity of results obtained by CLIJ and ImageJ. You mention also that while algorithms on CPU can use double precision, in GPU, this is usually single-precision. In your opinion, what are the trade-offs to keep in mind when using CLIJ for processing?
  3. Is CLIJ compatible with processing super-resolution microscopy?
  4. You discuss also in the FAQ section, that multi-channel, time lapse images are not compatible with CLIJ, at present. Why is it so? As a user who currently does precisely this type of image, I know a big bottleneck to output is precisely the slow processing time of very large videos. Do you envisage that in the near future, CLIJ will also enable processing 4D and 5D datasets?
  5. In your blog discussions, and in your documentation, you carefully explain the “pull” and “push” code. You also discuss in your FAQ how to optimize use of CLIJ, including the type of datasets that would indeed benefit more from GPU-based processing than CPU. While at the moment this is a user-based decision, do you think that in the future, based on the dataset and workflow, a platform such as Fiji can automatically assign the dataset for GPU or CPU-based processing, depending on what is most optimal? Namely a hybrid platform with a user friendly interface.
  6. You gave the example of the Drosophila embryo. Would machine learning approaches for image analysis benefit also from GPU-based processing? Is it an option CLIJ could provide?
  7. Two aspects that benefit from accelerated image processing are throughput and quality. In terms of quality, do you think there are more functions currently not existing, or sub-optimal in Fiji, which can be improved by the use of CLIJ and GPU-based processing?

References

  1. Preibisch S et al, Efficient Bayesian-based Multiview deconvolution. Nature Methods, 11 (6) (2014)
  2. Laine R, et al, NanoJ: a high performance open-source super-resolution microscopy toolbox, Journal of Physics D: Applied Physics,52 (16), (2019)
  3. Culley, S et al, Quantitative mapping and minimization of super-resolution optical imaging artefacts, Nature Methods, 15 (4), (2018)
  4. Weigert, M, et al, Content-aware image restoration: pushing the limits of fluorescence microscopy, Nature Methods, 15 (12), (2018)
  5. Falk T, et al, U-Net: deep learning from cell counting, detection and morphometry, Nature Methods, 16(4), (2019)
  6. Schmid, B et al, 3Dscript: animating 3D/4D microscopy data using a natural-language-based syntax, Nature Methods16 (4), (2019)
  7. Haase R, Royer LA, et al, CLIJ: GPU-accelerated image processing for everyone, bioRxiv, (2019)

Acknowledgement

I am very grateful to Robert Haase and Loic Royer for their time and input, for engaging in answering my questions and discussion, and providing very useful additional links to their work. I thank Mate Palfy for his helpful feedback on this highlight.

Tags: image analysis, microscopy

doi: https://doi.org/10.1242/prelights.13735

Read preprint (No Ratings Yet)

Author's response

Robert Haase (RH) and Loic Royer (LR) shared

Open questions

  1. In your discussion, you mention that CLIJ is compatible with smart microscopy, doing real-time processing. Has it been used already, and in what type of operations?

RH: We recommend CLIJ for processing images on-the-fly (also for other samples than Drosophila) because we do that in routine. Background-subtracted maximum projections with scale bars are saved before the raw data. But smart microscopy goes much further. We showed earlier that one of our microscopes can observe several Drosophila embryos in early stage subsequently, predict when one will undergo gastrulation in advance and then image just this one with increased temporal resolution. That’s what we work on in Dresden: event driven smart microscopy, actually running on the CPU back in the days. We wanted to be faster in processing and more flexible. We had bigger plans but we were limited by slow processing and analysis algorithms. Thus, CLIJ started as a collection of operations for event-driven smart microscopy. At the same time I programmed auto-completion in Fijis script editor – as a side project. Finally, the idea came up that auto-completion has the potential of bringing GPU-acceleration to everyone, also to people who don’t feel like learning programming OpenCL or CUDA. Thus, we decided going on that detour leading to this preprint.

 

  1. One topic you discuss in the FAQ section, is that you put emphasis on mathematical correctness, consistency, simplicity of code, performance, and similarity of results obtained by CLIJ and ImageJ. You mention also that while algorithms on CPU can use double precision, in GPU, this is usually single-precision. In your opinion, what are the trade-offs to keep in mind when using CLIJ for processing?

RH: CLIJ users clearly aim for highest speed. Also without GPUs, you can gain speed by sacrificing accuracy, precision, quality and resolution. Microscopists know what I’m talking about. Users should make this decision actively by trying different solutions. Recommendation: If you see two ways for implementing a workflow in CLIJ, try both! Measure time, compare results with ImageJ and then make your decision. Let me illustrate an example: If you run ImageJs Mean-3D-filter on my laptop with radius 3 on a 16 MB image stack, it takes about 3 seconds. Running CLIJs Mean3DSphere filter, which is quite similar to ImageJs filter, takes about 120 milliseconds. Speedup factor 25 – amazing, no? If you run CLIJs Mean3DBox filter, which is a bit different but might fulfil its purpose, it needs just 40 milliseconds. That’s a speedup factor of 75 – including data transfer to/from GPU btw! GPU-acceleration is an amazing playground and investing some time in experimenting with workflows totally pays off, as you can spare hours in the future. I could spend my whole day doing these CPU-GPU comparisons. Unfortunately, I like watching little developing fly and beetle eggs in a light sheet microscope even more.

 

  1. Is CLIJ compatible with processing super-resolution microscopy?

RH: Sure. You can load any kind of images and process them. Unfortunately, CLIJ doesn’t have super-res specific operations such as Gaussian fitting… yet. But I’m convinced it would be beneficial to do that on the GPU. You are not the first asking for that. The more people ask for it and talk about it, the higher the chance that somebody will make it happen at some point. Maybe not me as I’m not a super-res guy, but I’m happy to help anyone who wants to dive into doing this on the GPU.

 

  1. You discuss also in the FAQ section, that multi-channel, time lapse images are not compatible with CLIJ, at present. Why is it so? As a user who currently does precisely this type of image, I know a big bottleneck to output is precisely the slow processing time of very large videos. Do you envisage that in the near future, CLIJ will also enable processing 4D and 5D datasets?

RH: I would love to make that happen. Technically it’s absolutely feasible. But without going too much into detail, there are two major imponderables with n-D images we need to solve first from a conceptual point of view: Firstly, operations over time and channels are tricky usage-wise. Just an example: Gaussian blur in 2D or 3D are very similar and technically easy to implement. Blurring over time also makes sense in time lapse data if you want to stabilize jittering objects for example. A Gaussian blur over channels is not so easy to justify. Even worse, thresholding moving objects over time in a 4D-fashion can actually cause severe faults in the results which are not easy to spot if you work with a 4D-dataset. The very most workflows processing 4D and 5D images are executed frame by frame and channel by channel anyway and this can be done with CLIJ already. Secondly, memory in GPUs is often limited. GPUs with 8 GB memory and more are actually expensive. Thus, also from this point of view it makes sense to split long time lapses into frames and process them in the GPU individually. As there is a need to deal with this, I’m planning to introduce some simplification for loading n-D images into the GPU. But in there they might still be treated as lists or arrays of 2D and 3D images.

 

  1. In your blog discussions, and in your documentation, you carefully explain the “pull” and “push” code. You also discuss in your FAQ how to optimize use of CLIJ, including the type of datasets that would indeed benefit more from GPU-based processing than CPU. While at the moment this is a user-based decision, do you think that in the future, based on the dataset and workflow, a platform such as Fiji can automatically assign the dataset for GPU or CPU-based processing, depending on what is most optimal? Namely a hybrid platform with a user friendly interface.

RH: It would be so great to have a Fiji that recognizes a powerful GPU in the computer and then runs workflows on it. However, we must leave this decision to the user because of the small differences between CPUs and GPUs. Otherwise we might sacrifice reproducibility of workflows. Counter question: If a future Fiji would in general run on the GPU producing reproducible results: Would you use it even though there are small differences compared to “the old CPU Fiji”?

MDN: It depends on the degree of differences, and the relevance of differences to what I am trying to study. For instance a lot of the work I do is motion tracking, registration, background correction and/or segmentation in very large datasets. For most of the workflow, accelerated speed would be an enormous advantage a) to the throughput, and b) to the amount of parameters I analyse.

RH: Indeed, for many applications perfect precision is not necessary. We just wanted users to be aware. We shall be good scientists and check if our workflows are doing the right thing – as always. If everyone is fine with small differences, then we can reach the next level regarding image processing speed in many applications. I’m looking forward to see amazing workflows running in real-time which were taking ages in the past.

 

  1. You gave the example of the Drosophila embryo. Would machine learning approaches for image analysis benefit also from GPU-based processing? Is it an option CLIJ could provide?

LR: All major machine learning libraries have both CPU and GPU back-ends, and the GPU backend is used 99% of the time because it is often orders of magnitude faster than CPU based machine learning. So in the end, GPUs are definitely the way to go for fast image processing, machine learning or not.

 

  1. Two aspects that benefit from accelerated image processing are throughput and quality. In terms of quality, do you think there are more functions currently not existing, or sub-optimal in Fiji, which can be improved by the use of CLIJ and GPU-based processing?

RH: We recently made CLIJ compatible with Matlab because we need some operations in CLIJ which don’t exist in Fiji, but in Matlab: mostly vector and matrix arithmetic based algorithms. Programming these methods in the GPU appeared simpler if we can compare them directly to Matlab. So yes, more functions are coming. The prototype of CLIJ2 has currently about twice the number of operations CLIJ1 offers.

Furthermore, quite some people asked if it would be possible to run the Trainable WEKA Segmentation and the 3D Objects Counter on the GPU. I cannot promise that both will become part of CLIJ2. But I can tell you that both exist as functional prototypes.

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the bioinformatics category:

Deep learning-based predictions of gene perturbation effects do not yet outperform simple linear methods

Constantin Ahlmann-Eltze, Wolfgang Huber, Simon Anders

Selected by 11 November 2024

Benjamin Dominik Maier

Bioinformatics

Functional Diversity of Memory CD8 T Cells is Spatiotemporally Imprinted

Miguel Reina-Campos, Alexander Monell, Amir Ferry, et al.

Selected by 22 August 2024

Marina Schernthanner

Bioinformatics

Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium

Nikolai Hecker , Niklas Kempynck , David Mauduit, et al.

Selected by 02 July 2024

Rodrigo Senovilla-Ganzo

Bioinformatics

Also in the cell biology category:

Germplasm stability in zebrafish requires maternal Tdrd6a and Tdrd6c

Alessandro Consorte, Yasmin El Sherif, Fridolin Kielisch, et al.

Selected by 13 December 2024

Justin Gutkowski

Developmental Biology

Leukocytes use endothelial membrane tunnels to extravasate the vasculature

Werner J. van der Meer, Abraham C.I. van Steen, Eike Mahlandt, et al.

Selected by 08 December 2024

Felipe Del Valle Batalla

Cell Biology

Platelet-derived LPA16:0 inhibits adult neurogenesis and stress resilience in anxiety disorder

Thomas Larrieu, Charline Carron, Fabio Grieco, et al.

Selected by 04 December 2024

Harvey Roweth

Neuroscience

Also in the developmental biology category:

Germplasm stability in zebrafish requires maternal Tdrd6a and Tdrd6c

Alessandro Consorte, Yasmin El Sherif, Fridolin Kielisch, et al.

Selected by 13 December 2024

Justin Gutkowski

Developmental Biology

Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis

Joshua Hawley, Robert Lea, Veronica Biga, et al.

Selected by 15 November 2024

Ankita Walvekar

Developmental Biology

Actin-based deformations of the nucleus control multiciliated ependymal cell differentiation

Marianne Basso, Alexia Mahuzier, Syed Kaabir Ali, et al.

Selected by 30 October 2024

Ryan Harrison

Developmental Biology

Also in the immunology category:

Leukocytes use endothelial membrane tunnels to extravasate the vasculature

Werner J. van der Meer, Abraham C.I. van Steen, Eike Mahlandt, et al.

Selected by 08 December 2024

Felipe Del Valle Batalla

Cell Biology

Alzheimer’s Disease Patient Brain Extracts Induce Multiple Pathologies in Vascularized Neuroimmune Organoids for Disease Modeling and Drug Discovery

Yanru Ji, Xiaoling Chen, Meek Connor Joseph, et al.

Selected by 07 November 2024

Manuel Lessi

Neuroscience

Global coordination of protrusive forces in migrating immune cells

Patricia Reis-Rodrigues, Nikola Canigova, Mario J. Avellaneda, et al.

Selected by 10 October 2024

yohalie kalukula

Biophysics

Also in the microbiology category:

Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water

Adebayo J. Bello, Omorilewa B. Ebunoluwa, Rukayat O. Ayorinde, et al.

Selected by 14 November 2024

Safieh Shah, Benjamin Dominik Maier

Epidemiology

Intracellular diffusion in the cytoplasm increases with cell size in fission yeast

Catherine Tan, Michael C. Lanz, Matthew Swaffer, et al.

Selected by 18 October 2024

Leeba Ann Chacko, Sameer Thukral

Cell Biology

Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA

Brett T. Wisniewski, Laura L. Lackner

Selected by 30 August 2024

Leeba Ann Chacko

Cell Biology

Also in the molecular biology category:

Germplasm stability in zebrafish requires maternal Tdrd6a and Tdrd6c

Alessandro Consorte, Yasmin El Sherif, Fridolin Kielisch, et al.

Selected by 13 December 2024

Justin Gutkowski

Developmental Biology

Platelet-derived LPA16:0 inhibits adult neurogenesis and stress resilience in anxiety disorder

Thomas Larrieu, Charline Carron, Fabio Grieco, et al.

Selected by 04 December 2024

Harvey Roweth

Neuroscience

Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water

Adebayo J. Bello, Omorilewa B. Ebunoluwa, Rukayat O. Ayorinde, et al.

Selected by 14 November 2024

Safieh Shah, Benjamin Dominik Maier

Epidemiology

Also in the physiology category:

Investigating Mechanically Activated Currents from Trigeminal Neurons of Non-Human Primates

Karen A Lindquist, Jennifer Mecklenburg, Anahit H. Hovhannisyan, et al.

Selected by 04 December 2024

Vanessa Ehlers

Neuroscience

Geometric analysis of airway trees shows that lung anatomy evolved to enable explosive ventilation and prevent barotrauma in cetaceans

Robert L. Cieri, Merryn H. Tawhai, Marina Piscitelli-Doshkov, et al.

Selected by 26 November 2024

Sarah Young-Veenstra

Evolutionary Biology

Precision Farming in Aquaculture: Use of a non-invasive, AI-powered real-time automated behavioural monitoring approach to predict gill health and improve welfare in Atlantic salmon (Salmo salar) aquaculture farms

Meredith Burke, Dragana Nikolic, Pieter Fabry, et al.

Selected by 11 September 2024

Jasmine Talevi

Animal Behavior and Cognition

preLists in the bioinformatics category:

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Antimicrobials: Discovery, clinical use, and development of resistance

Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.

 



List by Zhang-He Goh

Also in the cell biology category:

November in preprints – the CellBio edition

This is the first community-driven preList! A group of preLighters, with expertise in different areas of cell biology, have worked together to create this preprint reading lists for researchers with an interest in cell biology. Categories include: 1) cancer cell biology 2) cell cycle and division 3) cell migration and cytoskeleton 4) cell organelles and organisation 5) cell signalling and mechanosensing 6) genetics/gene expression

 



List by Felipe Del Valle Batalla et al.

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

BioMalPar XVI: Biology and Pathology of the Malaria Parasite

[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria

 



List by Dey Lab, Samantha Seah

1

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra

Biophysical Society Annual Meeting 2019

Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA

 



List by Joseph Jose Thottacherry

ASCB/EMBO Annual Meeting 2018

This list relates to preprints that were discussed at the recent ASCB conference.

 



List by Dey Lab, Amanda Haage

Also in the developmental biology category:

BSDB/GenSoc Spring Meeting 2024

A list of preprints highlighted at the British Society for Developmental Biology and Genetics Society joint Spring meeting 2024 at Warwick, UK.

 



List by Joyce Yu, Katherine Brown

GfE/ DSDB meeting 2024

This preList highlights the preprints discussed at the 2024 joint German and Dutch developmental biology societies meeting that took place in March 2024 in Osnabrück, Germany.

 



List by Joyce Yu

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

2nd Conference of the Visegrád Group Society for Developmental Biology

Preprints from the 2nd Conference of the Visegrád Group Society for Developmental Biology (2-5 September, 2021, Szeged, Hungary)

 



List by Nándor Lipták

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

EMBL Conference: From functional genomics to systems biology

Preprints presented at the virtual EMBL conference "from functional genomics and systems biology", 16-19 November 2020

 



List by Jesus Victorino

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Society for Developmental Biology 79th Annual Meeting

Preprints at SDB 2020

 



List by Irepan Salvador-Martinez, Martin Estermann

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EDBC Alicante 2019

Preprints presented at the European Developmental Biology Congress (EDBC) in Alicante, October 23-26 2019.

 



List by Sergio Menchero et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

SDB 78th Annual Meeting 2019

A curation of the preprints presented at the SDB meeting in Boston, July 26-30 2019. The preList will be updated throughout the duration of the meeting.

 



List by Alex Eve

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Young Embryologist Network Conference 2019

Preprints presented at the Young Embryologist Network 2019 conference, 13 May, The Francis Crick Institute, London

 



List by Alex Eve

Pattern formation during development

The aim of this preList is to integrate results about the mechanisms that govern patterning during development, from genes implicated in the processes to theoritical models of pattern formation in nature.

 



List by Alexa Sadier

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

Zebrafish immunology

A compilation of cutting-edge research that uses the zebrafish as a model system to elucidate novel immunological mechanisms in health and disease.

 



List by Shikha Nayar

Also in the immunology category:

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

Single Cell Biology 2020

A list of preprints mentioned at the Wellcome Genome Campus Single Cell Biology 2020 meeting.

 



List by Alex Eve

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Antimicrobials: Discovery, clinical use, and development of resistance

Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.

 



List by Zhang-He Goh

Also in the molecular biology category:

2024 Hypothalamus GRC

This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.

 



List by Nathalie Krauth

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra
Close