Menu

Close

Signaling dynamics control cell fate in the early Drosophila embryo

Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher

Preprint posted on June 08, 2018 https://www.biorxiv.org/content/early/2018/06/08/342998

How can the same molecule specify different dev outcomes? By systematically inducing Erk signalling using optogenetics, a preprint by @toettch lab suggests that differences in the dynamics of signalling underlie different cell fates in fly embryos

Selected by Yara E. Sánchez Corrales

Background

The Erk mitogen-activated protein kinase is required for cells to adopt different fates during early embryogenesis in the fruit fly at least in three different contexts:

  • Anterior pole, where Erk is implied in the formation of head structures
  • Ventral midline, where Erk is involved in the patterning underlying neural precursors
  • Posterior pole, where Erk influences posterior midgut invagination

 How could the same signalling molecule specify different cell fates? An attractive hypothesis is called dynamic control which posits that a single signal can be interpreted differently depending on its dynamic features such as amplitude, duration or frequency of activation.

In order to explore whether Erk signalling in the developing embryo is decoded by dynamic control, the authors use a recent tool, the OptoSOS system, that permits the precise manipulation of Erk signalling using light. Upon blue light stimulation, a Ras activator goes to the membrane and this activates a kinase cascade that culminates in the activation of Erk signalling (see Johnson et al., 2017 for more details). Using this tool in combination with genetic manipulations, the authors are able to test different hypotheses related to the dynamic decoding of Erk signalling.

Key findings

The authors start by inducing Erk signalling in the whole embryo using homogeneous illumination. This perturbation induces tissue contractions that are explained by the ectopic expression of myosin II. Importantly, upon light stimulation the receptor-ligand pair mist and folded gastrulation (fog), involved in tissue contractility in the embryo, are also upregulated. In order to address which network is involved in ectopic contraction, the authors assess the expression pattern of some transcription factors known to promote contractility during development. They find that the light-induced Erk is able to expand the expression domain of tailess (tll) and huckebein (hkb), two transcription factors associated with posterior midgut (PMG) invagination. Thus, ectopic Erk signalling is sufficient to drive cells to adopt a contractile PMG-like fate.

Interestingly, the 85% posterior part of the embryo shows higher level of myosin activation compared to the anterior, suggesting that contractility mediated by Erk is suppressed in the anterior part of the embryo. The authors show that high levels of Bicoid (Bcd) block Erk-dependent contraction behaviour because when Bcd is removed (ie. bcd mutant), Erk induces uniform contractility. This suggests that the combination of signals, Bcd and Erk, underlies head structures in the anterior part of the embryo. Thus, it is an example of combinatorial control.

The authors next tested the effects of the time and duration of Erk signaling that is known to be different in normal development. For instance, in the PMG, Erk expresses early during the first nuclear cycles while in the ventral midline it expresses just before gastrulation during the 14th nuclear cycle. Moreover, in the PMG, Erk is sustained for over 1h while in the ventral midline is a transient 20 min pulse. Using the OptoSOS tool, the authors systematically vary the time and the duration of Erk signalling (i.e light induction for 30, 45, 60 or 120 min through different developmental times). They find that the duration of stimuli, regardless of the specific developmental window, predicts the response to Erk stimulation very well. Interestingly, short time stimulation (30 min) leads to increased levels of ind (associated with neuron specification) and longer stimulation (120 min) caused ectopic expression of mist, associated with contractility. Thus, the duration of Erk signalling is able to direct cell fate towards neuron precursors or contractile behaviour.

How is Erk signalling decoded within the cell? Two different models have been proposed: 1) persistence detector and 2) cumulative load sensor (Figure 1). In the former, persistent pulses of Erk stimuli are needed for downstream responses. In the second, distinct cell fates are triggered when the total signal reaches a threshold (Figure 1). These mechanisms can be distinguished by the phenotypic response to a pulsed versus a continuos stimulus. Erk induction divided into three equal pulses (3×5 or 3×15 min) leads to similar phenotypes to those observed in the case of single doses (15 or 45 min), suggesting that it is the total or cumulative Erk activity that is decoded.

Figure 1. The persistence detector and the cumulative load sensor are two mechanisms that could decode Erk signalling (a). In order to distinguish between them, Erk can be induced in pulses or as continuos stimulus. The cumulative sensor mechanism predicts the same response regardless of the shape of the stimuli (b). Induction of Erk signalling leads to similar phenotypic responses regardless of the shape of stimuli ( b), supporting the the cumulative load mechanism. (Figure 4 of the original preprint).

The authors also explore the type of genes that could be involved in decoding Erk signalling under the cumulative detector mechanism. They propose two different decoding types of genes: the accumulators and the thresholders. The accumulators will integrate the signal over time, thus their expression level will be proportional to the intensity of the stimuli. The thresholders will act as a switch and would increase abruptly above a stimulus threshold. The authors find that the terminal gap genes tll and hkb respond as predicted for accumulator genes, while hkb and mist act as a thresholders genes turning on abruptly after 30-45 min of stimulation.

Figure 2. Summary of Erk signalling dynamics implied in different cell fates during Drosophila embryo development (Figure 5 of the original preprint).

What I like about this preprint and open questions

 In this study, the use of an optogetic tool makes it possible to systematically control the spatial and temporal dynamics of Erk signalling. In my opinion, the combination of these kinds of quantitative tools and genetic perturbations make the Drosophila embryo a remarkable system for unravelling the dynamic features of both signalling and genetic networks.

I am convinced that quantitation and precise manipulation of dynamic signalling features (such as duration, intensity and time of stimuli) adds another level of understanding to signalling pathways by incorporating the temporal decoding of signalling.

I would like to know if the authors also tried to modulate the amounts of signalling levels by controlling the amplitude of the signal. If the cumulative load mechanism is driving the process, would a single high intensity stimulus produce the same effects as a prolonged low intensity stimuli?

I also wonder about the role of pulse frequency and periodicity. Could the frequency and period of activation be important? Presumably, other response genes could be influenced by a pulsatile behaviour.

I find it very interesting that induction of Erk increased contractility and induced myosin II ectopic expression. It is know that myosin II can be junctional or show pulses in the apico-medial domain. The former is associated with junction shrinking and the latter with decrease in cell area. I wonder if Erk overexpression will also change these distinct contractile behaviours.

I also really like the idea of unravelling the network behaviour that could decode signalling. I wonder whether “thresholders” and “accumulators” could also be part of a persistence decoding mechanism.

Finally, I find this preprint very inspiring and hope that approaches like this will help unravel more examples of dynamic control in development.

 

Tags: cell fate, contractility, myosin ii, optogenetics

Posted on: 18th October 2018 , updated on: 22nd October 2018

Read preprint (No Ratings Yet)




  • Author's response

    Jared Toettcher shared

    We are honored to be featured in preLights! We are also quite impressed
    with the depth and accuracy with which our paper was presented; for us,
    this discussion really underscores the value of publishing preprints.

    The open questions raised in the preLight are all excellent ones. First:
    your are correct that the “cumulative load” model predicts an
    equivalence between amplitude and duration. Put simply: if the total
    dose is all that the cell cares about, then a brief, bright pulse of
    light should give the same phenotype as a long, dim one. Indeed, this is
    one experimental direction we have pursued since publishing the preprint
    – and so far, the results appear to confirm our model. We hope to
    publish a revised manuscript soon!

    A second question revolves around the frequency of stimulation. This is
    something we are *very* interested in, especially as Erk activity has
    been shown to pulse (or oscillate) in many mammalian model systems. In
    mammalian cells, we have shown that repeated pulses of Erk can turn on
    some genes more efficiently than a single, constant stimulus (Wilson et
    al, Mol Cell 2017). Intriguingly, Erk pulses have not yet been observed
    in the fly – but I strongly suspect that they soon will…

    Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Also in the developmental biology category:

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Suppressor of Fused controls perinatal expansion and quiescence of future dentate adult neural stem cells

    Hirofumi Noguchi, Jesse Garcia Castillo, Kinichi Nakashima, et al.



    Selected by Ekaterina Dvorianinova

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Epiblast formation by Tead-Yap-dependent expression of pluripotency factors and competitive elimination of unspecified cells

    Masakazu Hashimoto, Hiroshi Sasaki



    Selected by Sarah Bowling, Teresa Rayon

    Also in the genetics category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    The Toll pathway inhibits tissue growth and regulates cell fitness in an infection-dependent manner

    Federico Germani, Daniel Hain, Denise Sternlicht, et al.



    Selected by Rohan Khadilkar

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey

    Evidence for an Integrated Gene Repression Mechanism based on mRNA Isoform Toggling in Human Cells

    Ina Hollerer, Juliet C Barker, Victoria Jorgensen, et al.



    Selected by Clarice Hong

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    CRISPR/Cas9-mediated gene deletion of the ompA gene in an Enterobacter gut symbiont impairs biofilm formation and reduces gut colonization of Aedes aegypti mosquitoes

    Shivanand Hegde, Pornjarim Nilyanimit, Elena Kozlova, et al.



    Selected by Snehal Kadam

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila

    Arya Zandvakili, Juli Uhl, Ian Campbell, et al.



    Selected by Clarice Hong

    1

    Also in the molecular biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Disrupting Transcriptional Feedback Yields an Escape-Resistant Antiviral

    Sonali Chaturvedi, Marie Wolf, Noam Vardi, et al.



    Selected by Pavithran Ravindran

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Retrieving High-Resolution Information from Disordered 2D Crystals by Single Particle Cryo-EM

    Ricardo Righetto, Nikhil Biyani, Julia Kowal, et al.



    Selected by David Wright

    The modular mechanism of chromocenter formation in Drosophila

    Madhav Jagannathan, Ryan Cummings, Yukiko M Yamashita



    Selected by Maiko Kitaoka

    1

    The structural basis for release factor activation during translation termination revealed by time-resolved cryogenic electron microscopy

    Ziao Fu, Gabriele Indrisiunaite, Sandip Kaledhonkar, et al.



    Selected by David Wright

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    DNA microscopy: Optics-free spatio-genetic imaging by a stand-alone chemical reaction

    Joshua A. Weinstein, Aviv Regev, Feng Zhang



    Selected by Theo Sanderson

    2

    Rapid embryonic cell cycles defer the establishment of heterochromatin by Eggless/SetDB1 in Drosophila

    Charles A Seller, Chun-Yi Cho, Patrick H O'Farrell



    Selected by Gabriel Aughey
    Close