Menu

Close

Spatiotemporally controlled Myosin relocalization and internal pressure cause biased cortical extension to generate sibling cell size asymmetry

Tri Thanh Pham, Arnaud Monnard, Jonne Helenius, Erik Lund, Nicole Lee, Daniel Mueller, Clemens Cabernard

Preprint posted on May 01, 2018 https://www.biorxiv.org/content/early/2018/05/01/311852

The right cell at the right size: how myosin-dependent tension and hydrostatic pressure coordinate to achieve physical asymmetry.

Selected by Giuliana Clemente

Categories: cell biology

Context and Background:

Cells of a developing organism can undergo either symmetric or asymmetric cell division. Upon symmetric cell division, the dividing cell generates two daughters of identical fate and size. Asymmetric cell division is a peculiar trait of stem cells and it serves both, self-renewal as well as lineage commitment and differentiation. In the context of cell division, asymmetry is generally meant as asymmetric inheritance of cell fate determinants or as a difference in the type and strength of signal(s) received from the niche. Furthermore, this form of division is often accompanied by asymmetry in cell size.

Drosophila Neuroblasts (NBs) represent a well-established system to study asymmetric stem cell division. These are large cells that repetitively divide to generate another self-renewing neuroblast and a smaller progenitor known as Ganglion Mother Cell (GMC). Neuroblasts generate cell-fate asymmetry by the establishment of a robust polarity axis. The generation of the polarity cues allows the cells to segregate fate determinants to the basal side, ensuring their subsequent inheritance by the future GMC. How cell size asymmetry is generated in the system is still somewhat elusive. Some evidence suggests that an apical-to-basal flow of Myosin-II provides a mean to generate unequally sized daughter cells (Cabernard et al, 2010; Connel et al. 2011; Ou et al. 2010). However it is still unclear by which mechanism Myosin-II promotes physical asymmetry and whether other forces acting on the system contribute to the outcome.

Key findings:

Pham et al. combine atomic force microscopy with the amenability and genetic power of Drosophila and suggest a multi-step model in which coordinated and dynamic changes in cortical tension and hydrostatic pressure direct apical membrane expansion and basal constriction, resulting in sibling size asymmetry (Figure 1). Specifically, they propose that an increase in internal pressure accompanied by a reduction in apical cortical tension drives apical expansion. At the onset of anaphase, once the internal pressure levels drastically reduce to basal level, a contractile ring forms shifted toward the basal side. This basal constriction starts basal membrane expansion and supports apical expansion as well.

 

Figure1: Proposed working model adopted from Figure 4 of the preprint.

 

Why I chose this paper:

Are cells smart entities able to receive, interpret and integrate multiple signals and tune their response accordingly? The question of cell intelligence is the big mystery that has been fascinating scientists for decades. How do cells know their relationship with the external environment? How are they able to travel long distances and get to the right place at the right time? Similarly, how do cells know what their right size should be in relation with the outer space and how do they tune their size during growth and division?

I chose the work from Pham and colleagues as they aim to address this latter question by trying to set a molecular base to the establishment of sibling cell asymmetry. This is physiologically relevant especially in the stem cell field, where keeping the right size ratio between the two daughter cells is crucial for cell specification and determination (Ou et al., 2010).

Questions for the Authors:

As the authors mention in the discussion, there is still space for a better characterisation of the process. The model indeed does not explain how internal pressure increases and whether this is under cell-cycle control. Another question would be: what is the membrane reservoir? Is new membrane delivered asymmetrically or asymmetric lipid distribution is achieved lately through the activity of the acto-myosin ring?

This area of research is undoubtedly expanding. In fact, on a smaller scale, one could ask how do cells know the size of their organelles? And by what molecular mechanisms do they control it? In this regard a good example has been recently offered by the Raff lab that published about regulation of centriole size and identified in Plk-4 the “homeostatic clock” which sets the time and rate of centriole growth (Aydogan M. G. et al., 2018).

References:

1. Cabernard, C., Prehoda, K.E., Doe, C.Q., 2010. A spindle-independent cleavage furrow positioning

pathway. Nature 467, 91–94. doi:10.1038/nature09334

2. Connell, M., Cabernard, C., Ricketson, D., Doe, C.Q., Prehoda, K.E., 2011. Asymmetric cortical

extension shifts cleavage furrow position in Drosophila neuroblasts. Mol. Biol. Cell 22, 4220–4226

doi:10.1091/mbc.E11-02-0173

3. Ou, G., Stuurman, N., D’Ambrosio, M., Vale, R.D., 2010. Polarized myosin produces unequal-size

daughters during asymmetric cell division. Science 330, 677–680. doi:10.1126/science.1196112

4. Mustafa G. Aydogan, ProAlan WainmanSaroj Saurya, Thomas L. Steinacker, Anna Caballe, Zsofia A. Novak, Janina Baumbach, Nadine Muschalik, Jordan W. Raff. A homeostatic clock sets daughter centriole size in flies. Journal of Cell Biology 217 (4), 1233-1248. doi: 10.1083/jcb.201801014

 

 

 

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    EFFECTORS OF THE SPINDLE ASSEMBLY CHECKPOINT BUT NOT THE MITOTIC EXIT NETWORK ARE CONFINED WITHIN THE NUCLEUS OF SACCHAROMYCES CEREVISIAE

    Lydia R Heasley, Jennifer G DeLuca, Steven M Markus



    Selected by Hiral Shah

    An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics

    Ilias Angelidis, Lukas M Simon, Isis E Fernandez, et al.



    Selected by Rob Hynds

    1

    Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

    Kristina Zahonova, Zoltan Fussy, Erik Bircak, et al.



    Selected by Ellis O'Neill

    1

    Imaging beyond the super-resolution limits using ultrastructure expansion microscopy (UltraExM)

    Davide Gambarotto, Fabian Zwettler, Marketa Cernohorska, et al.



    Selected by Satish Bodakuntla

    2

    OptoGranules reveal the evolution of stress granules to ALS-FTD pathology

    Peipei Zhang, Baochang Fan, Peiguo Yang, et al.



    Selected by Srivats Venkataramanan

    1

    A new calcium-activated dynein adaptor protein, CRACR2a, regulates clathrin-independent endocytic traffic in T cells

    Yuxiao Wang, Walter Huynh, Taylor Skokan, et al.



    Selected by Nicola Stevenson

    Mitotic chromosome alignment is required for proper nuclear envelope reassembly

    Cindy L Fonseca, Heidi LH Malaby, Leslie A Sepaniac, et al.



    Selected by Maiko Kitaoka

    WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids

    Anna Yoney, Fred Etoc, Albert Ruzo, et al.



    Selected by Sundar Naganathan

    Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading

    Hamish T J Gilbert, Venkatesh Mallikarjun, Oana Dobre, et al.



    Selected by Rebecca Quelch

    1

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Clathrin plaques form mechanotransducing platforms

    Agathe Franck, Jeanne Laine, Gilles Moulay, et al.



    Selected by Amanda Haage

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    A non-cell autonomous actin redistribution enables isotropic retinal growth

    Marija Matejcic, Guillaume Salbreux, Caren Norden



    Selected by Yara E. Sánchez Corrales

    1

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey
    Close

    We want to make our website, and the services we provide, useful and reliable. This sometimes involves placing small amounts of information called cookies on the device you used to access the internet. If you continue to use this website we will assume you are happy to accept our cookies.

    Accept