Menu

Close

Spatiotemporally controlled Myosin relocalization and internal pressure cause biased cortical extension to generate sibling cell size asymmetry

Tri Thanh Pham, Arnaud Monnard, Jonne Helenius, Erik Lund, Nicole Lee, Daniel Mueller, Clemens Cabernard

Preprint posted on May 01, 2018 https://www.biorxiv.org/content/early/2018/05/01/311852

The right cell at the right size: how myosin-dependent tension and hydrostatic pressure coordinate to achieve physical asymmetry.

Selected by Giuliana Clemente

Categories: cell biology

Context and Background:

Cells of a developing organism can undergo either symmetric or asymmetric cell division. Upon symmetric cell division, the dividing cell generates two daughters of identical fate and size. Asymmetric cell division is a peculiar trait of stem cells and it serves both, self-renewal as well as lineage commitment and differentiation. In the context of cell division, asymmetry is generally meant as asymmetric inheritance of cell fate determinants or as a difference in the type and strength of signal(s) received from the niche. Furthermore, this form of division is often accompanied by asymmetry in cell size.

Drosophila Neuroblasts (NBs) represent a well-established system to study asymmetric stem cell division. These are large cells that repetitively divide to generate another self-renewing neuroblast and a smaller progenitor known as Ganglion Mother Cell (GMC). Neuroblasts generate cell-fate asymmetry by the establishment of a robust polarity axis. The generation of the polarity cues allows the cells to segregate fate determinants to the basal side, ensuring their subsequent inheritance by the future GMC. How cell size asymmetry is generated in the system is still somewhat elusive. Some evidence suggests that an apical-to-basal flow of Myosin-II provides a mean to generate unequally sized daughter cells (Cabernard et al, 2010; Connel et al. 2011; Ou et al. 2010). However it is still unclear by which mechanism Myosin-II promotes physical asymmetry and whether other forces acting on the system contribute to the outcome.

Key findings:

Pham et al. combine atomic force microscopy with the amenability and genetic power of Drosophila and suggest a multi-step model in which coordinated and dynamic changes in cortical tension and hydrostatic pressure direct apical membrane expansion and basal constriction, resulting in sibling size asymmetry (Figure 1). Specifically, they propose that an increase in internal pressure accompanied by a reduction in apical cortical tension drives apical expansion. At the onset of anaphase, once the internal pressure levels drastically reduce to basal level, a contractile ring forms shifted toward the basal side. This basal constriction starts basal membrane expansion and supports apical expansion as well.

 

Figure1: Proposed working model adopted from Figure 4 of the preprint.

 

Why I chose this paper:

Are cells smart entities able to receive, interpret and integrate multiple signals and tune their response accordingly? The question of cell intelligence is the big mystery that has been fascinating scientists for decades. How do cells know their relationship with the external environment? How are they able to travel long distances and get to the right place at the right time? Similarly, how do cells know what their right size should be in relation with the outer space and how do they tune their size during growth and division?

I chose the work from Pham and colleagues as they aim to address this latter question by trying to set a molecular base to the establishment of sibling cell asymmetry. This is physiologically relevant especially in the stem cell field, where keeping the right size ratio between the two daughter cells is crucial for cell specification and determination (Ou et al., 2010).

Questions for the Authors:

As the authors mention in the discussion, there is still space for a better characterisation of the process. The model indeed does not explain how internal pressure increases and whether this is under cell-cycle control. Another question would be: what is the membrane reservoir? Is new membrane delivered asymmetrically or asymmetric lipid distribution is achieved lately through the activity of the acto-myosin ring?

This area of research is undoubtedly expanding. In fact, on a smaller scale, one could ask how do cells know the size of their organelles? And by what molecular mechanisms do they control it? In this regard a good example has been recently offered by the Raff lab that published about regulation of centriole size and identified in Plk-4 the “homeostatic clock” which sets the time and rate of centriole growth (Aydogan M. G. et al., 2018).

References:

1. Cabernard, C., Prehoda, K.E., Doe, C.Q., 2010. A spindle-independent cleavage furrow positioning

pathway. Nature 467, 91–94. doi:10.1038/nature09334

2. Connell, M., Cabernard, C., Ricketson, D., Doe, C.Q., Prehoda, K.E., 2011. Asymmetric cortical

extension shifts cleavage furrow position in Drosophila neuroblasts. Mol. Biol. Cell 22, 4220–4226

doi:10.1091/mbc.E11-02-0173

3. Ou, G., Stuurman, N., D’Ambrosio, M., Vale, R.D., 2010. Polarized myosin produces unequal-size

daughters during asymmetric cell division. Science 330, 677–680. doi:10.1126/science.1196112

4. Mustafa G. Aydogan, ProAlan WainmanSaroj Saurya, Thomas L. Steinacker, Anna Caballe, Zsofia A. Novak, Janina Baumbach, Nadine Muschalik, Jordan W. Raff. A homeostatic clock sets daughter centriole size in flies. Journal of Cell Biology 217 (4), 1233-1248. doi: 10.1083/jcb.201801014

 

 

 

Posted on: 24th June 2018 , updated on: 25th June 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Drosophila kinesin-8 stabilises kinetochore-microtubule interaction

    Tomoya Edzuka, Gohta Goshima



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma.

    Andrea Palamidessi, Chiara Malinverno, Emanuela FRITTOLI, et al.



    Selected by Tim Fessenden

    1

    Tension on kinetochore substrates is insufficient to prevent Aurora-triggered detachment

    Anna K de Regt, Charles L Asbury, Sue Biggins



    Selected by Angika Basant

    1

    Single-cell RNA sequencing reveals novel cell differentiation dynamics during human airway epithelium regeneration

    Sandra Ruiz Garcia, Marie Deprez, Kevin Lebrigand, et al.



    Selected by Rob Hynds

    1

    Actomyosin-driven tension at compartmental boundaries orients cell division independently of cell geometry in vivo

    Elena Scarpa, Cedric Finet, Guy Blanchard, et al.



    Selected by Ivana Viktorinová

    Molecular organization of integrin-based adhesion complexes in mouse Embryonic Stem Cells

    Shumin Xia, Evelyn K.F. Yim, Pakorn Kanchanawong

    AND

    Superresolution architecture of pluripotency guarding adhesions

    Aki Stubb, Camilo Guzmán, Elisa Närvä, et al.



    Selected by Nicola Stevenson, Amanda Haage

    Transcriptional initiation and mechanically driven self-propagation of a tissue contractile wave during axis elongation

    Anais Bailles, Claudio Collinet, Jean-Marc Philippe, et al.



    Selected by Sundar Naganathan

    1

    Bridging the divide: bacteria synthesizing archaeal membrane lipids

    Laura Villanueva, F. A. Bastiaan von Meijenfeldt, Alexander B. Westbye, et al.

    AND

    Extensive transfer of membrane lipid biosynthetic genes between Archaea and Bacteria

    Gareth A. Coleman, Richard D. Pancost, Tom A. Williams



    Selected by Gautam Dey

    1

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Lysosome exocytosis is required for mitosis

    Charlotte Nugues, Nordine Helassa, Robert Burgoyne, et al.



    Selected by claudia conte

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    Transient intracellular acidification regulates the core transcriptional heat shock response

    Catherine G Triandafillou, Christopher D Katanski, Aaron R Dinner, et al.



    Selected by Srivats Venkataramanan

    1

    Budding yeast complete DNA replication after chromosome segregation begins

    Tsvetomira Ivanova, Michael Maier, Alsu Missarova, et al.



    Selected by Gautam Dey, Maiko Kitaoka
    Close