Menu

Close

Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, Kristen Marie Kwan, George Thomas Eisenhoffer Jr.

Preprint posted on May 17, 2018 https://www.biorxiv.org/content/early/2018/05/17/324301

How do biophysical cues control cell behaviour during tissue repair? This recent preprint employs high resolution live imaging of regenerating zebrafish tissue to provide new insight into the tension-induced changes underlying successful wound repair

Selected by Helen Weavers

Context

Following injury, tissues rapidly initiate a multi-step repair process to restore tissue architecture. Effective repair requires precise control of the cell number within the tissue – and this means that tissue-wide levels of cell proliferation and elimination must be tightly coordinated. Given that adjacent cells in epithelial tissues are physically linked, any changes to individual cells can have profound long-range mechanical and behavioural effects on surrounding cells. Although mechanical forces are well known to regulate cell behaviours during tissue morphogenesis1, whether these mechanical forces play important roles in regulating cell behaviours across a repairing epithelial sheet is currently less well understood.

Key findings

In this interesting preprint, Franco et al use high resolution time-lapse imaging of zebrafish larvae to analyse the changes in cell behaviour that occur at an individual and tissue-wide level during epithelial repair. These live-imaging studies following surgical amputation of the zebrafish tail (Figure 1, A before and B after amputation) reveal there is a strict spatial regulation of cell elimination and proliferation across the regenerating tissue. Whilst injury causes a dramatic increase in the extrusion of non-apoptotic cells in crowded areas near the wound edge (see Figure 1; GFP labelled actin), cell proliferation occurs preferentially in separate non-crowded areas much further back. But are these distinct cell behaviours linked to changes in tissue mechanics? By both applying specialised CellFIT software2  to infer cellular tension and measuring cell density, the authors could correlate changes in tension (Figure 2) and crowding with these specific cell behaviours.

Figure 1: Taken from Figure 1A of the preprint showing live imaging of (A) non-amputated and (B) amputated 4 day post-fertilization (dpf) zebrafish larvae expressing LifeAct-GFP.

Figure 2: Taken from Figure 1G-H of the preprint showing tension maps generated using CellFIT software from live-imaging of non-amputated (G) and amputated (H) zebrafish larvae.

How then, do epithelial cells detect such changes in crowding and tissue tension? Strikingly, experimental disruption of mechanically-regulated stretch-activated ion channels (SACs) caused dramatic effects on cell behaviour; by disrupting the cells ability to sense mechanical forces, cells failed to extrude from crowded areas of the tissue and these areas even experienced aberrant proliferation. Thus, successful tissue regeneration relies on the ability of epithelial cells to sense mechanical forces though the activity of SACs, in order to spatially and temporally coordinate cell extrusion and proliferation across a repairing epithelial sheet.

Future directions

This work raises many fascinating questions for future research. What signalling pathways lie downstream of the SAC activity in response to crowding or increased tissue tension to elicit these different cellular responses? Could such mechano-signalling pathways be exploited in the clinic to improve the repair of chronic wounds that fail to heal? Given my own interests in field of injury-induced inflammation, I’m also intrigued as to the fate of the extruded epithelial cells – are these eliminated cells cleared by phagocytic cells of the zebrafish innate immune system or do they persist and contribute to tissue repair in other ways? Moreover, if immune cells are involved, does phagocytic clearance of these cells have a critical role in the extrusion and regeneration process itself?

References

  1. Heisenberg, CP. And Bellaiche, Y. 2013. Forces in tissue morphogenesis and patterning. Cell. 153:948-62.
  2. Brodland, GW., Veldhuis, JH., Kim, S., Perrone, M., Mashburn, D. and Hutson, MS. 2014. CellFIT: a cellular force-inference toolkit using curvilinear cell boundaries. PloS One. 9:e99116.

Tags: live-imaging, zebrafish; regeneration; wound repair; tissue mechanics; morphogenesis; cell migration; cell death

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Spatiotemporally controlled Myosin relocalization and internal pressure cause biased cortical extension to generate sibling cell size asymmetry

    Tri Thanh Pham, Arnaud Monnard, Jonne Helenius, et al.



    Selected by Giuliana Clemente

    Nuclear decoupling is part of a rapid protein-level cellular response to high-intensity mechanical loading

    Hamish T J Gilbert, Venkatesh Mallikarjun, Oana Dobre, et al.



    Selected by Rebecca Quelch

    1

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Clathrin plaques form mechanotransducing platforms

    Agathe Franck, Jeanne Laine, Gilles Moulay, et al.



    Selected by Amanda Haage

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    A non-cell autonomous actin redistribution enables isotropic retinal growth

    Marija Matejcic, Guillaume Salbreux, Caren Norden



    Selected by Yara E. Sánchez Corrales

    1

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey

    Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

    Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, et al.



    Selected by Arnaud Monnard

    1

    Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

    Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    A novel microtubule nucleation pathway for meiotic spindle assembly in oocytes

    Pierre ROME, Hiroyuki OHKURA



    Selected by Binyam Mogessie

    ERM proteins: The missing actin linkers in clathrin-mediated endocytosis

    Audun Sverre Kvalvaag, Kay Oliver Schink, Andreas Brech, et al.



    Selected by Nicola Stevenson

    Cell type-specific interchromosomal interactions as a mechanism for transcriptional diversity

    Adan Horta, Kevin Monahan, Lisa Bashkirova, et al.



    Selected by Boyan Bonev

    A non-canonical role for dynamin-1 in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells

    Saipraveen Srinivasan, Christoph J. Burckhardt, Madhura Bhave, et al.



    Selected by Penelope La-Borde

    Atomic model of microtubule-bound tau

    Elizabeth H Kellogg, Nisreen M.A. Hejab, Simon Poepsel, et al.



    Selected by Satish Bodakuntla

    1

    Also in the developmental biology category:

    Human macrophages survive and adopt activated genotypes in living zebrafish

    Colin D. Paul, Alexus Devine, Kevin Bishop, et al.



    Selected by Giuliana Clemente

    Altering the temporal regulation of one transcription factor drives sensory trade-offs

    Ariane Ramaekers, Simon Weinberger, Annelies Claeys, et al.



    Selected by Mariana R.P. Alves

    Presence of midline cilia supersedes the expression of Lefty1 in forming the midline barrier during the establishment of left-right asymmetry

    Natalia A Shylo, Dylan A Ramrattan, Scott D Weatherbee



    Selected by Hannah Brunsdon

    Genetic compensation is triggered by mutant mRNA degradation

    Mohamed El-Brolosy, Andrea Rossi, Zacharias Kontarakis, et al.



    Selected by Andreas van Impel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Photoperiod sensing of the circadian clock is controlled by ELF3 and GI

    Usman Anwer, Amanda Davis, Seth Jon Davis, et al.



    Selected by Annika Weimer

    Limb- and tendon-specific Adamtsl2 deletion identifies a soft tissue mechanism modulating bone length

    Dirk Hubmacher, Stetson Thacker, Sheila M Adams, et al.



    Selected by Alberto Rosello-Diez

    A non-cell autonomous actin redistribution enables isotropic retinal growth

    Marija Matejcic, Guillaume Salbreux, Caren Norden



    Selected by Yara E. Sánchez Corrales

    1

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in the spider Parasteatoda tepidariorum

    Christian L. B. Paese, Anna Schoenauer, Daniel J. Leite, et al.



    Selected by Erik Clark

    1

    Cell type-specific interchromosomal interactions as a mechanism for transcriptional diversity

    Adan Horta, Kevin Monahan, Lisa Bashkirova, et al.



    Selected by Boyan Bonev

    Germ layer specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm.

    Miguel Salinas-Saavedra, Amber Q. Rock, Mark Q. Martindale



    Selected by ClaireS & SophieM

    1

    Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development

    Andrew J Aman, Alexis N Fulbright, David M Parichy



    Selected by Andreas van Impel

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Temporal Control of Transcription by Zelda in living Drosophila embryos

    Jeremy Dufourt, Antonio Trullo, Jennifer Hunter, et al.



    Selected by Teresa Rayon

    1

    An atlas of silencer elements for the human and mouse genomes

    Naresh Doni Jayavelu, Ajay Jajodia, Arpit Mishra, et al.



    Selected by Rafael Galupa

    1

    Also in the genetics category:

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Genetic compensation is triggered by mutant mRNA degradation

    Mohamed El-Brolosy, Andrea Rossi, Zacharias Kontarakis, et al.



    Selected by Andreas van Impel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Limb- and tendon-specific Adamtsl2 deletion identifies a soft tissue mechanism modulating bone length

    Dirk Hubmacher, Stetson Thacker, Sheila M Adams, et al.



    Selected by Alberto Rosello-Diez

    Cancer modeling by Transgene Electroporation in Adult Zebrafish (TEAZ)

    Scott J Callahan, Stephanie Tepan, Yan M Zhang, et al.



    Selected by Hannah Brunsdon

    1

    PDX Finder: A Portal for Patient-Derived tumor Xenograft Model Discovery

    Nathalie Conte, Jeremy Mason, Csaba Halmagyi, et al.



    Selected by Carmen Adriaens

    Bioelectric-calcineurin signaling module regulates allometric growth and size of the zebrafish fin

    Jacob Daane, Jennifer Lanni, Ina Rothenberg, et al.



    Selected by Alberto Rosello-Diez

    1

    Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of cell division, differentiation, and loss

    Judy Martin, Erin Nicole Sanders, Paola Moreno-Roman, et al.



    Selected by Natalie Dye

    F-actin patches nucleated on chromosomes coordinate capture by microtubules in oocyte meiosis

    Mariia Burdyniuk, Andrea Callegari, Masashi Mori, et al.



    Selected by Binyam Mogessie

    Comprehensive characterization of transcript diversity at the human NODAL locus

    Scott D Findlay, Lynne-Marie Postovit



    Selected by Christian Ramos

    Cell-nonautonomous local and systemic responses to cell arrest enable long-bone catch-up growth

    Alberto Rosello-Diez, Linda Madisen, Sebastien Bastide, et al.



    Selected by Natalie Dye

    Precise temporal regulation of alternative splicing during neural development

    Sebastien M Weyn-Vanhentenryck, Huijuan Feng, Dmytro Ustianenko, et al.



    Selected by James Gagnon

    Mutations in Bcl9 and Pygo genes cause congenital heart defects by tissue-specific perturbation of Wnt/β-catenin signaling

    Claudio Cantù, Anastasia Felker, Dario Zimmerli, et al.



    Selected by Andreas van Impel

    Insect wings and body wall evolved from ancient leg segments

    Heather S Bruce, Nipam H Patel

    AND

    Two sets of wing homologs in the crustacean, Parhyale hawaiensis

    Courtney M Clark-Hachtel, Yoshinori Tomoyasu



    Selected by Erik Clark

    2

    Close

    We want to make our website, and the services we provide, useful and reliable. This sometimes involves placing small amounts of information called cookies on the device you used to access the internet. If you continue to use this website we will assume you are happy to accept our cookies.

    Accept