Menu

Close

Feedback control of neurogenesis by tissue packing

Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, Brian A. Link, Sean G. Megason

Preprint posted on January 23, 2018 https://www.biorxiv.org/content/early/2018/01/23/252445

Using the force: mechanical regulation of tissue growth and architecture during neural tube development.

Selected by Sarah Morson

Background:

The journey from a single fertilised cell to a complete organism is an incredibly complex and tightly regulated process. It critically requires a precise balance between cellular proliferation, which produces appropriate size, and differentiation, which generates the required complexity. Understanding the many mechanisms controlling growth and differentiation and how they interact remains a fundamental question in developmental biology. While extensive research has shed light on molecular mechanisms regulating growth, researchers are now considering what role physical forces may play in governing proliferation and differentiation. Previous research has revealed a role for mechanical force in controlling the proliferative balance, but this work tends to be restricted to 2-D monolayers that are not representative of a growing organism.

This preprint from Tom Hiscock and colleagues utilises advances in live-imaging and the genetically malleable zebrafish embryo to investigate the effects of physical forces on the proliferation/differentiation balance during neural tube growth.

 

Key Findings:

In this study the authors demonstrate a role for cell geometry and tissue packing in controlling tissue growth, propose a negative feedback model describing this control, and postulate how molecular interactions allow cells to determine force and shape.

Using in toto timelapse imaging of single cells in the developing zebrafish neural tube, they present a model in which a high density of apically-dividing progenitor cells displaces surrounding cells, forcing them away from the apical surface and inducing their differentiation.

From this they describe a feedback mechanism whereby the physical constraints of the organism allow tissue packing to increase the differentiation rate, thus inhibiting overall cell number. Mathematical models reveal a possible purpose of this feedback: to reduce variability in tissue growth, ensuring similar growth within different tissue regions and between embryos.

 

Why I chose this preprint:

As a developmental biologist I found this study fascinating: to me the idea how, despite so many environmental variables, organisms of the same species (and all the organs within them) end up the appropriate size and complexity is a compelling puzzle. We know that there is rarely one factor at work in controlling such complex processes, and most of the previous research has focused on the signalling and genetic factors. This paper adds a whole new layer of complexity to be investigated, and much work will be required to uncover how this fits into the puzzle of development.

 

Open Questions:

  1. How do the mechanical forces interact with signalling? While the authors briefly considered the idea of Notch signalling playing a role, this opens a new avenue of research about how mechanical forces and intercellular signalling interact together to control growth.
  2. How are these mechanical forces disrupted in developmental disorders that impact tissue growth? Particularly with neurodevelopmental disorders e.g. Zika Virus induced microcephaly, there is disruption to tissue size. Does disruption to the feedback control contribute to this?

 

Tags: development, growth, live-imaging, mechanics, model, neural tube, neurogenesis, zebrafish

Read preprint (No Ratings Yet)




  • Author's response

    Sean Megason shared

    Thanks for the highlight! Yes there is lot to be worked in terms of how cell shape and/or mechanical changes are molecularly connected to changes in differentiation rate. But in general, I think it can be useful to try to identify cell/tissue level mechanisms and design principles and then try to connect this with what is known at the molecular level although the full integration can be challenging.

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the developmental biology category:

    Human macrophages survive and adopt activated genotypes in living zebrafish

    Colin D. Paul, Alexus Devine, Kevin Bishop, et al.



    Selected by Giuliana Clemente

    Altering the temporal regulation of one transcription factor drives sensory trade-offs

    Ariane Ramaekers, Simon Weinberger, Annelies Claeys, et al.



    Selected by Mariana R.P. Alves

    Presence of midline cilia supersedes the expression of Lefty1 in forming the midline barrier during the establishment of left-right asymmetry

    Natalia A Shylo, Dylan A Ramrattan, Scott D Weatherbee



    Selected by Hannah Brunsdon

    Genetic compensation is triggered by mutant mRNA degradation

    Mohamed El-Brolosy, Andrea Rossi, Zacharias Kontarakis, et al.



    Selected by Andreas van Impel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Photoperiod sensing of the circadian clock is controlled by ELF3 and GI

    Usman Anwer, Amanda Davis, Seth Jon Davis, et al.



    Selected by Annika Weimer

    Limb- and tendon-specific Adamtsl2 deletion identifies a soft tissue mechanism modulating bone length

    Dirk Hubmacher, Stetson Thacker, Sheila M Adams, et al.



    Selected by Alberto Rosello-Diez

    A non-cell autonomous actin redistribution enables isotropic retinal growth

    Marija Matejcic, Guillaume Salbreux, Caren Norden



    Selected by Yara E. Sánchez Corrales

    1

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in the spider Parasteatoda tepidariorum

    Christian L. B. Paese, Anna Schoenauer, Daniel J. Leite, et al.



    Selected by Erik Clark

    1

    Cell type-specific interchromosomal interactions as a mechanism for transcriptional diversity

    Adan Horta, Kevin Monahan, Lisa Bashkirova, et al.



    Selected by Boyan Bonev

    Germ layer specific regulation of cell polarity and adhesion gives insight into the evolution of mesoderm.

    Miguel Salinas-Saavedra, Amber Q. Rock, Mark Q. Martindale



    Selected by ClaireS & SophieM

    1

    Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development

    Andrew J Aman, Alexis N Fulbright, David M Parichy



    Selected by Andreas van Impel

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Temporal Control of Transcription by Zelda in living Drosophila embryos

    Jeremy Dufourt, Antonio Trullo, Jennifer Hunter, et al.



    Selected by Teresa Rayon

    1

    An atlas of silencer elements for the human and mouse genomes

    Naresh Doni Jayavelu, Ajay Jajodia, Arpit Mishra, et al.



    Selected by Rafael Galupa

    1

    Also in the molecular biology category:

    A robust method for transfection in choanoflagellates illuminates their cell biology and the ancestry of animal septins

    David Booth, Heather Middleton, Nicole King



    Selected by Maya Emmons-Bell

    SWI/SNF remains localized to chromatin in the presence of SCHLAP1

    Jesse R Raab, Keriayn N Smith, Camarie C Spear, et al.



    Selected by Carmen Adriaens

    1

    Widespread inter-individual gene expression variability in Arabidopsis thaliana

    Sandra Cortijo, Zeynep Aydin, Sebastian Ahnert, et al.



    Selected by Martin Balcerowicz

    Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs

    Kale Kundert, James E Lucas, Kyle E Watters, et al.



    Selected by Samantha Seah

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey

    Optogenetic reconstitution reveals that Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble

    Masako Okumura, Toyoaki Natsume, Masato T Kanemaki, et al.



    Selected by Arnaud Monnard

    1

    A non-canonical role for dynamin-1 in regulating early stages of clathrin-mediated endocytosis in non-neuronal cells

    Saipraveen Srinivasan, Christoph J. Burckhardt, Madhura Bhave, et al.



    Selected by Penelope La-Borde

    Neuregulin-1 exerts molecular control over axolotl lung regeneration through ErbB family receptors

    Tyler B Jensen, Peter Giunta, Natalie Grace Schulz, et al.



    Selected by Alberto Rosello-Diez

    Higher-Order Organization Principles of Pre-translational mRNPs

    Mihir Metkar, Hakan Ozadam, Bryan R. Lajoie, et al.



    Selected by Carmen Adriaens

    Capturing the onset of PRC2-mediated repressive domain formation

    Ozgur Oksuz, Varun Narendra, Chul-Hwan Lee, et al.



    Selected by Boyan Bonev

    RNA-directed activation of cytoplasmic dynein-1 in reconstituted transport RNPs

    Mark A McClintock, Carly I Dix, Christopher M Johnson, et al.

    AND

    Recruitment of Two Dyneins to an mRNA-Dependent Bicaudal D Transport Complex

    Thomas E. Sladewski, Neil Billington, M. Yusuf Ali, et al.



    Selected by Dmitry Nashchekin

    PIN7 auxin carrier is a terminator of radial root expansion in Arabidopsis thaliana

    Michel Ruiz Rosquete, Jurgen Kleine-Vehn

    AND

    PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana

    Elena Feraru, Mugurel I. I Feraru, Elke Barbez, et al.



    Selected by Erin Sparks

    A role for RNA and DNA:RNA hybrids in the modulation of DNA repair by homologous recombination

    Giuseppina D'Alessandro, Marek Adamowicz, Donna Whelan, et al.



    Selected by Carmen Adriaens

    Feedback control of neurogenesis by tissue packing

    Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, et al.



    Selected by Sarah Morson

    1

    Epigenetic Drift of H3K27me3 in Aging Links Glycolysis to Healthy Longevity

    Zaijun Ma, Hui Wang, Yuping Cai, et al.



    Selected by Sammi (Shuang Wang)

    Also in the physiology category:

    Rearing temperature and fatty acid supplementation jointly affect membrane fluidity and heat tolerance in Daphnia

    Dominik Martin-Creuzburg, Bret L. Coggins, Dieter Ebert, et al.



    Selected by Alexander Little

    Long-term live imaging of the Drosophila adult midgut reveals real-time dynamics of cell division, differentiation, and loss

    Judy Martin, Erin Nicole Sanders, Paola Moreno-Roman, et al.



    Selected by Natalie Dye

    Individual- and population-level drivers of consistent foraging success across environments

    Lysanne Snijders, Ralf HJM Kurvers, Stefan Krause, et al.



    Selected by Rasmus Ern

    Zebrafish as a model to investigate the effects of exercise in cancer

    Alexandra Yin, Nathaniel R. Campbell, Lee W. Jones, et al.



    Selected by Jacky G. Goetz

    Feedback control of neurogenesis by tissue packing

    Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, et al.



    Selected by Sarah Morson

    1

    Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy

    Martin Weigert, Uwe Schmidt, Tobias Boothe, et al.



    Selected by Uri Manor

    Galleria mellonella as an Insect Model for P. destructans, the Cause of White-Nose Syndrome in Bats

    Chapman N Beekman, Lauren Meckler, Eleanor Kim, et al.



    Selected by Heath MacMillan

    Genome-wide selection scans integrated with association mapping reveal mechanisms of physiological adaptation across a salinity gradient in killifish

    Reid S. Brennan, Timothy M. Healy, Heather J. Bryant, et al.



    Selected by Andy Turko

    From Armament to Ornament: Performance Trade-Offs in the Sexual Weaponry of Neotropical Electric Fishes

    Kory M. Evans, Maxwell J. Bernt, Matthew A. Kolmann, et al.



    Selected by Cassandra Donatelli
    Close

    We want to make our website, and the services we provide, useful and reliable. This sometimes involves placing small amounts of information called cookies on the device you used to access the internet. If you continue to use this website we will assume you are happy to accept our cookies.

    Accept