Menu

Close

Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

John K Eykelenboom, Marek Gierlinski, Zuojun Yue, Nadia Hegarat, Hillary Pollard, Tatsuo Fukagawa, Helfrid Hochegger, Tomoyuki U Tanaka

Preprint posted on April 20, 2018 https://doi.org/10.1101/305391

and

Quantitative imaging of chromatin decompaction in living cells

Elisa Dultz, Roberta Mancini, Guido Polles, Pascal Vallotton, Frank Alber, Karsten Weis

Preprint posted on April 22, 2018 https://doi.org/10.1101/219253

It takes two to (un)tangle: Dual Lac/Tet operator arrays report on chromatin dynamics in live cells

Selected by Carmen Adriaens, Gautam Dey

By Gautam Dey and Carmen Adriaens

 

Interphase cell nuclei are compartmentalized into loose, transcribed euchromatin and compact, largely untranscribed heterochromatin. The consensus is that for a given gene to be transcribed, the active chromatin needs to decompact further through changes in the chromatin landscape. Another form of chromatin dynamics occurs during cell division. Indeed, to divide correctly, the DNA is neatly folded into an extreme state of compaction (the mitotic chromosome) after replication. In two recent independent studies, researchers have used a two-color live cell reporter system to study chromatid separation before and chromatin compaction during mitosis, and the process of decompaction upon transcriptional activation. Since the experimental setup is very similar, we will discuss these papers jointly and highlight the different insights obtained from this live cell imaging system.

 

The experimental setup

At a specific site in the genome, a lactose operon array (LacO) is integrated in the DNA. The repeats can be recognized by the Lac inhibitor protein (LacI), which is here overexpressed and tagged with a green fluorescent protein (GFP) to be visualized as a single dot per lacO in the cells. At another site in the DNA, a Tet operon, TetO, is integrated and its cognate protein (the Tet repressor, TetR) is tagged and visualized with the red fluorescent reporter mCherry. The two dots (green and red) can be followed using microscopy in live cells, to enable the monitoring and modeling of chromatin dynamics at high resolution in real time in different biological settings.

 

Figure 1: (A) Experimental set-up in human HT-1080 cells used by Eykelenboom et al. with sample images in (B), scale bar = 10 µm. (C) Experimental set-up in budding yeast used by Dultz et al. with sample images on the right. Taken from Figure 1 of Eykelenboom et al. 2018 and Figure 1 of Dultz et al. 2018 under Creative Commons CC-BY-4.0 licenses.

 

What are the papers about?

Eykelenboom et al. used CRISPR to integrate the Tet and Lac operator arrays separated by a 250 kb interval on one arm of chromosome 5 in HT-1080 human cells. Adding in a 4x-mCherry-tagged Tet repressor and an EGFP-tagged Lac repressor enabled them to follow dynamics of chromatid segregation and compaction throughout the unperturbed cell cycle in single cells. Imaging the 2 green and 2 red spots, representing the chromatids after replication, revealed 4 discernible states: non-resolved, partially resolved, resolved and compacted.

Surprisingly, cells begin to cycle between the partially resolved and unresolved states rather early in G2. This cycle is driven by an apparent antagonism between cohesin holding chromatids together on one hand, and WAPL trying to remove cohesin from the chromosome arms on the other. Exploiting a fortuitous side effect of the integration sites of their operator arrays, the authors showed that the timing of separation depends on the local cohesin concentration. Inhibiting topoisomerase II activity, and thereby preventing the resolution of DNA catenanes, caused partially resolved chromatids to revert to the unresolved state early in mitosis. Finally, the authors showed that condensin II depletion caused defects in sister chromatid separation, while condensin I depletion affected only the final compaction stage.

In a second paper, Dultz and colleagues used very similar experimental principles to study chromatin decompaction upon transcriptional activation. The authors integrated the LacO and TetO repeats on either side of the budding yeast GAL locus and studied chromatin dynamics by measuring distances between red and green dots in different conditions. In the absence of glucose and galactose, the locus is inactive, but derepressed. In the presence of glucose, the locus is actively repressed. In both scenarios, the distance between the dots was small, reflecting an inactive chromatin state. When, on the other hand, the cells were grown in or induced with galactose, the locus became highly active and the 3 linked genes (GAL7, GAL10 and GAL1) in the locus became transcribed. In this active state, the green and red dots lining the GAL locus on either side reversibly increased in distance, reminiscent of decompaction and transcriptional activation.

Next, the authors asked whether these observations are dependent specifically on either spatial or linear decompaction. Spatial decompaction is primarily mediated by post-translational modifications of the histones and hence manipulation of nucleosome-nucleosome interactions, whereas in linear decompaction the wrapping density changes through eviction and remodeling of nucleosomes at the site of transcription. They found that a change in histone modifications, and, by extension, inter-nucleosomal interactions, does not dramatically alter the decompaction dynamics. Conversely, both manipulation of transcription itself and nucleosomal density do.

These observations led to the hypothesis that decompaction of chromatin is principally mediated by the number of nucleosomes evicted. To test this, the authors set up an exogenous reporter system 10 kb upstream of the original locus and measured changes in distances between dots when no, one, or two open reading frames were present. In this way, they found that the extent of decompaction indeed correlates with the length of the transcribed region. Finally, the authors concluded that although decompaction is transcription dependent, the inverse isn’t necessarily true: cells can continue to transcribe the GAL locus even in the absence of significant changes in distances between the two reporter dots.

 

Takeaways and questions for the future

It’s a very exciting time for the field of chromatin reorganization and dynamics! To take just one example, new experimental approaches have validated an old molecular model for condensin function1 and mapped a pathway to mitotic chromosome organization mediated by condensin I and II2. In parallel, a proliferation of live cell reporters have uncovered layers of cell cycle regulation that were hitherto invisible to bulk assays3,4. Taken together, these advances represent the perfect storm to preface an analysis of chromosome dynamics in single cells as they progress through the cell cycle.

The most surprising finding from the first paper (Eykelenboom et al.) is that chromosomes cycle between unresolved and partially resolved states through most of their G2 phase, driven by an apparent concentration-dependent antagonism between cohesin and WAPL.

What then is the purpose of this (futile?) cycle, and how is it broken during prophase? Saturated feedback loops of this type can be used to generate switch-like responses (also termed zero-order ultrasensitivity5). In turn, then, one could ask: is it necessary to have a switch-like transition between unresolved and resolved chromatids during prophase?

Moreover, the authors’ observations complement other recent work2 helping to resolve long-standing questions in the field about the individual and collective roles of the two condensin complexes.

It has long been recognized that actively transcribed chromatin is less compact than inactive chromatin, and much is known about the packaging and histone modifications responsible for these states. However, being able to visualize actual decompaction directly in live cells is impressive: Dultz et al. leverage the ultra-simplicity of the experimental setup to reveal the solution of the chicken-and-egg problem of loose chromatin during transcription.

Yet, there may be some caveats to these experiments as well: because the GAL locus is highly active when growing in galactose and the regulation of the system is rather unique compared to the rest of the yeast genome (ON/OFF), these observations may confer a local rather than a global rule. The physical decompaction (i.e. the increase in physical distance between the two arrays) in other loci may not be as striking as here, and will potentially be more difficult to study.

Furthermore, we note that both studies employ population averaging to draw certain conclusions, faced with high levels of cell-to-cell variability. Other recent work6 shows that chromosomal contacts observed by high-throughput sequencing approaches such as Hi-C occur as infrequently as in ~10% of cells only (as observed by microscopy), highlighting the extraordinary differences even within relatively homogenous or synchronized populations of cells. Additional work will be required to understand the sources of this variability and its functional consequences, if any.

 

References

  1. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
  2. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).
  3. Chao, H. X. et al. Evidence that the cell cycle is a series of uncoupled, memoryless phases. bioRxiv 283614 (2018). doi:10.1101/283614
  4. Spencer, S. L. et al. The Proliferation-Quiescence Decision Is Controlled by a Bifurcation in CDK2 Activity at Mitotic Exit. Cell 155, 369–383 (2013).
  5. Ferrell, J. E. & Ha, S. H. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem. Sci. 39, 496–503 (2014).
  6. Finn, E. et al. Heterogeneity and Intrinsic Variation in Spatial Genome Organization. biorXiv (2017). doi: https://doi.org/10.1101/171801

 

Tags: cell cycle, chromatin dynamics, live cell imaging, teamwork makes the dream work, transcription

Posted on: 15th May 2018

(No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant

    Vilius Kurauskas, Audrey Hessel, François Dehez, et al.

    AND

    Major concerns with the integrity of the mitochondrial ADP/ATP carrier in dodecyl-phosphocholine used for solution NMR studies

    Martin S. King, Paul G. Crichton, Jonathan J. Ruprecht, et al.



    Selected by Reid Alderson

    1

    Mechanosensitive binding of p120-Catenin at cell junctions regulates E-Cadherin turnover and epithelial viscoelasticity

    K. Venkatesan Iyer, Romina Piscitello-Gómez, Frank Jülicher, et al.



    Selected by Ivana Viktorinová

    Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

    Augusto Berrocal, Nicholas C Lammers, Hernan G Garcia, et al.



    Selected by Erik Clark

    Structural Basis of Tubulin Recruitment and Assembly by Tumor Overexpressed Gene (TOG) domain array Microtubule Polymerases

    Stanley Nithiananatham, Brian Cook, Fred Chang, et al.

    AND

    Roles for tubulin recruitment and self-organization by TOG domain arrays in Microtubule plus-end tracking and polymerase

    Brian Cook, Fred Chang, Ignacio Flor-Parra, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    Clathrin plaques form mechanotransducing platforms

    Agathe Franck, Jeanne Laine, Gilles Moulay, et al.



    Selected by Amanda Haage

    Molecular dynamics simulations disclose early stages of the photo-activation of cryptochrome 4

    Daniel R. Kattnig, Claus Nielsen, Ilia A. Solov'yov



    Selected by Miriam Liedvogel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Two contractile pools of actomyosin distinctly load and tune E-cadherin levels during morphogenesis

    Girish R. Kale, Xingbo Yang, Jean-Marc Philippe, et al.



    Selected by Arnaud Monnard

    Feedback control of neurogenesis by tissue packing

    Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, et al.



    Selected by Sarah Morson

    1

    Tunable molecular tension sensors reveal extension-based control of vinculin loading

    Andrew S LaCroix, Andrew D Lynch, Matthew E Berginski, et al.



    Selected by Amanda Haage

    1

    Also in the cell biology category:

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.



    Selected by Yen-Chung Chen

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Catherine M Buckley, Victoria L Heath, Aurelie Gueho, et al.



    Selected by Giuliana Clemente

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    mRNA localisation in endothelial cells regulates blood vessel sprouting

    Guilherme Costa, Nawseen Tarannum, Shane Herbert



    Selected by Andreas van Impel

    Local protein synthesis in axon terminals and dendritic spines differentiates plasticity contexts

    Anne-Sophie Hafner, Paul Donlin-Asp, Beulah Leitch, et al.



    Selected by Dipen Rajgor

    The cytoskeleton as a smart composite material: A unified pathway linking microtubules, myosin-II filaments and integrin adhesions

    Nisha Mohd Rafiq, Yukako Nishimura, Sergey V. Plotnikov, et al.



    Selected by Coert Margadant

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    Profiling the surface proteome identifies actionable biology for TSC1 mutant cells beyond mTORC1 signaling

    Junnian Wei, Kevin K. Leung, Charles Truillet, et al.



    Selected by Rob Hynds

    1

    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.



    Selected by Angika Basant

    1

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.



    Selected by Ana Patricia Ramos

    Also in the molecular biology category:

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Site-specific K63 ubiquitinomics reveals post-initiation regulation of ribosomes under oxidative stress

    Songhee Back, Christine Vogel, Gustavo M Silva



    Selected by Srivats Venkataramanan

    1

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila



    Selected by Clarice Hong

    1

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Template switching causes artificial junction formation and false identification of circular RNAs

    Chong Tang, Tian Yu, Yeming Xie, et al.



    Selected by Fabio Liberante

    Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant

    Vilius Kurauskas, Audrey Hessel, François Dehez, et al.

    AND

    Major concerns with the integrity of the mitochondrial ADP/ATP carrier in dodecyl-phosphocholine used for solution NMR studies

    Martin S. King, Paul G. Crichton, Jonathan J. Ruprecht, et al.



    Selected by Reid Alderson

    1

    Targeting light-gated chloride channels to neuronal somatodendritic domain reduces their excitatory effect in the axon

    Jessica Messier, Hongmei Chen, Zhao-Lin Cai, et al.

    AND

    High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins

    Mathias Mahn, Lihi Gibor, Katayun Cohen-Kashi Malina, et al.



    Selected by Mahesh Karnani

    2

    Glutamic acid is a carrier for hydrazine during the biosyntheses of fosfazinomycin and kinamycin

    Kwo-Kwang Abraham Wang, Tai L. Ng, Peng Wang, et al.



    Selected by Ellis O'Neill

    The Histone H3-H4 Tetramer is a Copper Reductase Enzyme

    Narsis Attar, Oscar A Campos, Maria Vogelauer, et al.



    Selected by Lauren Neves

    Super-Mendelian inheritance mediated by CRISPR/Cas9 in the female mouse germline

    Hannah A. Grunwald, Valentino M. Gantz, Gunnar Poplawski, et al.



    Selected by Rebekah Tillotson

    1

    EFFECTORS OF THE SPINDLE ASSEMBLY CHECKPOINT BUT NOT THE MITOTIC EXIT NETWORK ARE CONFINED WITHIN THE NUCLEUS OF SACCHAROMYCES CEREVISIAE

    Lydia R Heasley, Jennifer G DeLuca, Steven M Markus



    Selected by Hiral Shah

    TTL proteins scaffold brassinosteroid signaling components at the plasma membrane to optimize signal transduction in plant cells

    Vitor Amorim-Silva, Alvaro Garcia-Moreno, Araceli G Castillo, et al.



    Selected by Martin Balcerowicz

    1

    Peculiar features of the plastids of the colourless alga Euglena longa and photosynthetic euglenophytes unveiled by transcriptome analyses

    Kristina Zahonova, Zoltan Fussy, Erik Bircak, et al.



    Selected by Ellis O'Neill

    1

    OptoGranules reveal the evolution of stress granules to ALS-FTD pathology

    Peipei Zhang, Baochang Fan, Peiguo Yang, et al.



    Selected by Srivats Venkataramanan

    1

    Close