Spatial Self-Organization Resolves Conflicts Between Individuality and Collective Migration
Posted on: 24 April 2018
Preprint posted on 5 April 2018
Keeping the runners and tumblers together: Spontaneous spatial organization allows for the collective migration of phenotypically diverse groups
Selected by Amanda HaageCategories: cell biology, microbiology
Why This Is Cool – Populations of E. coli cells can migrate collectively up chemoattractant gradients and they do so with a biased random walk produced by straight “runs” and random “tumbles.” It has also been previously established that E. coli that are genetically identical present with variable swimming phenotypes i.e. some cells run more and some cells tumble more than others. What Fu et al. set out to answer was how do these groups of cells travel together despite their individual differences in chemotactic ability? To answer this, they had to observe both collective and individual behaviors, so they used the smartly designed microfluidic device pictured below. The narrow channel allowed E. coli cells to migrate in bands up a gradient, towards an open chamber where cells could disperse and individual behavior could be tracked. Using this set-up, they were able to establish that although there is some selection for less tumbling in collectively migrating bands, phenotypic diversity is definitely still present. They then expanded a classic mathematical model1 for collective chemotaxis to account for individual diversities. This expanded model allowed them to predict how different swimming phenotypes could still travel together. Spatial sorting of cells, so that high tumbling coincides with a steeper gradient, allows the group to compensate for diversity. So the less efficient, more tumbley cells get sorted to the back of the group where the gradient is steeper, because the front runner cells, which perform better with small changes in gradient, metabolize a certain amount of the attractant, leaving a steeper gradient behind them. The steeper gradient keeps the tumblers more focused and they are able to keep up to a certain cut-off point. Fu et al. were then able to confirm these predictions experimentally with mixed levels of expression of the chemotaxis regulating phosphatase CheZ. In addition, they identified a possible role for oxygen availability in controlling this spatial sorting. E. coli need oxygen to metabolize these chemoattractants, but oxygen becomes less available with more cells, such as the conditions of the middle of the band (Figure 1). More oxygen is available at the back due to lower cell density, which increases metabolism, thus increasing the local gradient steepness even more and possibly allowing even the worst tumblers to keep up.
Why I Selected It – I was looking for preprints on the collective migration of eukaryotic cells when I “tumbled” across this work from Fu et al., but I am so glad I stuck with it. I didn’t know bacteria even underwent collective migrations. This work uses an excellent and high-throughput model system for studying phenotypic diversity and I think their results are widely applicable, as they state – “For example in migrating neural crest cells and in fish shoals, many organisms may follow a few more informed individuals2.” Reading this preprint made me question the phenotypic diversity I see in my own research, a phenomenon not often addressed in eukaryotic cell biology.
Open Questions –
- Would you expect the spatial sorting of cells to be any different based on the type of chemotactic cue? Are there any non-consumable cues that could be tested, presumably to see a disruption in this process?
- Do you think this spatial sorting is an active process? If you reversed the direction of the gradient mid-migration, would the organization of the band change?
- If you continually removed a certain phenotype, say removed all the cells that fell off the band over multiple cycles of migration, would you eventually get a homogenous band with no spatial sorting? Would this impede or improve collective migration?
Related References –
- Classic model of collective bacteria cell chemotaxis
- Keller EF, Segel LA. Traveling bands of chemotactic bacteria: a theoretical analysis. J Theor Biol 30, 235-248 (1971).
- Collective cell migration review
- Mayor R, Etienne-Manneville S. The front and rear of collective cell migration. Nat Rev Mol Cell Biol 17, 97-109 (2016).
- Similar mechanisms operating in eukaryotic collective cell migration
- Tweedy L, Knecht DA, Mackay GM, Insall RH. Self-Generated Chemoattractant Gradients: Attractant Depletion Extends the Range and Robustness of Chemotaxis. PLoS Biol 14, e1002404 (2016).
Sign up to customise the site to your preferences and to receive alerts
Register hereAlso in the cell biology category:
Motor Clustering Enhances Kinesin-driven Vesicle Transport
Sharvari Pitke
Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis
Ankita Walvekar
Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water
Safieh Shah, Benjamin Dominik Maier
Also in the microbiology category:
Intracellular diffusion in the cytoplasm increases with cell size in fission yeast
Leeba Ann Chacko, Sameer Thukral
Significantly reduced, but balanced, rates of mitochondrial fission and fusion are sufficient to maintain the integrity of yeast mitochondrial DNA
Leeba Ann Chacko
The bat Influenza A virus subtype H18N11 induces nanoscale MHCII clustering upon host cell attachment
Mitchell Sarmie, Mohammed A. Jalloh
preListscell biology category:
in theBSCB-Biochemical Society 2024 Cell Migration meeting
This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.
List by | Reinier Prosee |
‘In preprints’ from Development 2022-2023
A list of the preprints featured in Development's 'In preprints' articles between 2022-2023
List by | Alex Eve, Katherine Brown |
preLights peer support – preprints of interest
This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.
List by | preLights peer support |
The Society for Developmental Biology 82nd Annual Meeting
This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.
List by | Joyce Yu, Katherine Brown |
CSHL 87th Symposium: Stem Cells
Preprints mentioned by speakers at the #CSHLsymp23
List by | Alex Eve |
Journal of Cell Science meeting ‘Imaging Cell Dynamics’
This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.
List by | Helen Zenner |
9th International Symposium on the Biology of Vertebrate Sex Determination
This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.
List by | Martin Estermann |
Alumni picks – preLights 5th Birthday
This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.
List by | Sergio Menchero et al. |
CellBio 2022 – An ASCB/EMBO Meeting
This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.
List by | Nadja Hümpfer et al. |
Fibroblasts
The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!
List by | Osvaldo Contreras |
EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)
A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.
List by | Alex Eve |
FENS 2020
A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020
List by | Ana Dorrego-Rivas |
Planar Cell Polarity – PCP
This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.
List by | Ana Dorrego-Rivas |
BioMalPar XVI: Biology and Pathology of the Malaria Parasite
[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria
List by | Dey Lab, Samantha Seah |
1
Cell Polarity
Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.
List by | Yamini Ravichandran |
TAGC 2020
Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20
List by | Maiko Kitaoka et al. |
3D Gastruloids
A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.
List by | Paul Gerald L. Sanchez and Stefano Vianello |
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
ASCB EMBO Annual Meeting 2019
A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)
List by | Madhuja Samaddar et al. |
EMBL Seeing is Believing – Imaging the Molecular Processes of Life
Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019
List by | Dey Lab |
Autophagy
Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.
List by | Sandra Malmgren Hill |
Lung Disease and Regeneration
This preprint list compiles highlights from the field of lung biology.
List by | Rob Hynds |
Cellular metabolism
A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.
List by | Pablo Ranea Robles |
BSCB/BSDB Annual Meeting 2019
Preprints presented at the BSCB/BSDB Annual Meeting 2019
List by | Dey Lab |
MitoList
This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.
List by | Sandra Franco Iborra |
Biophysical Society Annual Meeting 2019
Few of the preprints that were discussed in the recent BPS annual meeting at Baltimore, USA
List by | Joseph Jose Thottacherry |
ASCB/EMBO Annual Meeting 2018
This list relates to preprints that were discussed at the recent ASCB conference.
List by | Dey Lab, Amanda Haage |
Also in the microbiology category:
BioMalPar XVI: Biology and Pathology of the Malaria Parasite
[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria
List by | Dey Lab, Samantha Seah |
1
ECFG15 – Fungal biology
Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome
List by | Hiral Shah |
EMBL Seeing is Believing – Imaging the Molecular Processes of Life
Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019
List by | Dey Lab |
Antimicrobials: Discovery, clinical use, and development of resistance
Preprints that describe the discovery of new antimicrobials and any improvements made regarding their clinical use. Includes preprints that detail the factors affecting antimicrobial selection and the development of antimicrobial resistance.
List by | Zhang-He Goh |