Menu

Close

A novel microtubule nucleation pathway for meiotic spindle assembly in oocytes

Pierre ROME, Hiroyuki OHKURA

Preprint posted on March 22, 2018 https://www.biorxiv.org/content/early/2018/03/22/284901

Oocyte problems – a kinesin rises to the challenge. New work shows a kinesin motor delivers microtubule nucleation components to the spindle in fly oocytes. This enables robust assembly of meiotic spindles in the absence of classical centrosomes.

Selected by Binyam Mogessie

Categories: cell biology

Background. When eukaryotic cells divide, a mitotic spindle machinery that is built from the microtubule cytoskeleton equally segregates the chromosomes between daughter cells. In most cell types, this spindle machinery is primarily assembled by the microtubule nucleating activity of centrosomes, which are microtubule-organising centres composed of centrioles. However, in most species, meiotic spindles of oocytes are assembled in the absence of classical centrosomes that contain centrioles. In mouse oocytes, acentriolar microtubule-organising centres play a major role in non-centrosomal spindle assembly. In contrast, microtubule nucleation mediated by the chromosomes themselves predominatly drives spindle assembly in human oocytes. In fly oocytes, a microtubule nucleation mechanism orchestrated by the Augmin complex promotes meiotic spindle assembly. Importantly, loss of the Augmin complex does not prevent meiotic spindle assembly in fly oocytes, which suggests the existence of additional non-centrosomal microtubule nucleation pathways. One candidate, the gamma-tubulin subunit NEDD1 (Grip71 in flies), was implicated in centrosome- and Augmin-independent nucleation of microtubules in oocytes. How NEDD1/Grip71 mediates non-centrosomal meiotic spindle assembly in fly oocytes has remained unknown.

Key findings. Romé and Ohkura now demonstrate that the kinesin motor Mklp2 (Subito in flies) delivers NEDD1/Grip71 to meiotic spindles in oocytes. This allows microtubule nucleation and spindle assembly by the gamma-tubulin complex even in those oocytes that lack Augmin. Indeed, beads containing Mklp2/Subito and NEDD1/Grip71 isolated from oocytes mediate the nucleation of microtubules in cell-free assays. Oocytes therefore appear to have devised yet another solution to the problem of assembling meiotic spindles without centrioles – targeting microtubule nucleation activity to a cellular location of choice via a kinesin motor.

What I like about this work. My lab studies how oocyte spindles that are assembled in the absence of classical centrosomes segregate chromosomes during mammalian meiosis. We suspect that the current list of non-centrosomal spindle assembly pathways in mammalian oocytes may not be complete and that novel mechanisms await discovery. I thus found the preprint from Romé and Ohkura that demonstrates a new mechanism of microtubule nucleation very exciting.

Future directions. This study opens up a number of compelling questions that derserve investigation. We now know why NEDD1/Grip71 (microtubule nucleation activity) recruitment to the spindle critically relies on Augmin during mitosis but not meiosis. Which cues trigger meiosis-specific involvement of a kinesin in this process to allow Augmin-independent NEDD1/Grip71 recruitment (post-translational modifications, expression of an oocyte specific adapter)? The authors show that the N-terminal region of Mklp2/Subito suppresses microtubule nucleation by NEDD1/Grip71 both in oocytes and in vitro. Could this N-terminal region be the target of a meiosis-specific regulatory mechanism that allows Mklp2/Subito-mediated recruitment of microtubule nucleation activity to the spindle? Finally, it will be important to examine whether a similar kinesin-dependent non-centrosomal microtubule nucleation pathway promotes meiotic spindle assembly in oocytes of other species, including mice and humans.

Tags: aneuploidy, centrosomes, chromosome segregation, meiosis, oocyte, spindle

Posted on: 8th May 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division

    Evgeny Zatulovskiy, Daniel F. Berenson, Benjamin R. Topacio, et al.



    Selected by Zaki Ahmad

    1

    Minimal membrane interactions conferred by Rheb C-terminal farnesylation are essential for mTORC1 activation

    Shawn M Ferguson, Brittany Angarola



    Selected by Sandra Malmgren Hill

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Vibha SINGH

    EHD2-mediated restriction of caveolar dynamics regulates cellular lipid uptake

    Claudia Matthaeus, Ines Lahmann, Severine Kunz, et al.



    Selected by Andreas Müller

    1

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Joseph Jose Thottacherry

    Inactive USP14 and inactive UCHL5 cause accumulation of distinct ubiquitinated proteins in mammalian cells

    Jayashree Chadchankar, Victoria Korboukh, Peter Doig, et al.



    Selected by Mila Basic

    A metabolic switch from OXPHOS to glycolysis is essential for cardiomyocyte proliferation in the regenerating heart

    Hessel Honkoop, Dennis de Bakker, Alla Aharonov, et al.



    Selected by Andreas van Impel

    1

    S-acylated Golga7b stabilises DHHC5 at the plasma membrane to regulate desmosome assembly and cell adhesion.

    Keith T Woodley, Mark O Collins



    Selected by Abagael Lasseigne

    3

    A complex containing lysine-acetylated actin inhibits the formin INF2

    Mu A, Tak Shun Fung, Arminja N. Kettenbach, et al.



    Selected by Laura McCormick

    1

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine
    Close