Menu

Close

Clathrin plaques form mechanotransducing platforms

Agathe Franck, Jeanne Laine, Gilles Moulay, Michael Trichet, Christel Gentil, Anais Fongy, Anne Bigot, Sofia Benkhelifa-Ziyyat, Emmanuelle Lacene, Mai Thao Bui, Guy Brochier, Pascale Guicheney, Vincent Mouly, Norma Beatriz Romero, Catherine Coirault, Marc Bitoun, Stephane Vassilopoulos

Preprint posted on May 14, 2018 https://www.biorxiv.org/content/early/2018/05/14/321885?%3Fcollection=

Clathrin plaques are the new focal adhesions: Adhesive clathrin plaque association with the cytoskeleton provides a novel platform for mechanosensing, including the regulation of YAP/TAZ signaling.

Selected by Amanda Haage

Categories: biophysics, cell biology

Why This Is Cool – The authors provide evidence that two relatively new discoveries in cell biology, mechanotransduction via YAP/TAZ signaling and large clathrin plaque structures on the plasma membrane, work together to produce a novel platform for sensing mechanical input, connecting and regulating the cytoskeleton, and integrating various signaling pathways. These are the roles that have previously been established for focal adhesions. It makes sense that cells could complete these essential tasks in a variety of ways using other large membrane-associated protein complexes. The authors provide exhaustive evidence for the mechanisms and relevance of this new system. First, they demonstrate using beautiful images of immunogold labeling with metal-replica EM (Fig1) the precise organization of the clathrin plaques surrounded by branched actin and desmin intermediate filaments on primary mouse myotubes. Next they show that these structures respond to mechanical stimuli by subjecting the myotubes to cyclic stretching. Upon stretching the plaques decrease in size supposedly due to an increase in endocytosis and the YAP/TAZ mechanotransducers canonically accumulate in the nucleus with a concurrent increase in their target genes’ expression levels. Interestingly, myotubes without clathrin plaques had high levels of YAP/TAZ nuclear staining without stretching with no obvious response to stretch. The authors go on to demonstrate this is because the clathrin plaques act as sticky nets that sequester YAP/TAZ until the cell receives a mechanical input. They propose that YAP/TAZ gets stuck at the actin network surrounding clathrin plaques largely through an interaction between TAZ and Dynamin 2. Myotubes without Dynamin 2 lose their actin organization, and their ability to translocate YAP/TAZ in response to stretch. Now that they have established a mechanism for how clathrin plaques can act as mechanosensors, the authors go on to show the relevance of this mechanism in vivo. A type of centronuclear myopathy is caused by mutations in Dynamin 2. By using a knock-in mouse model for the most common human mutation linked to this disease, they demonstrate similar phenotypes to the Dynamin 2 knockout myotubes. These mice were found to have disorganized clathrin plaques, TAZ, and desmin in their muscles. In addition, primary culture of their mytotubes revealed a decrease in TAZ nuclear localization without mechanical input. To really drive the point home, the authors also repeat these findings in immortalized myotubes from a centronuclear myopathy human patient.

Fig. 1 (adapted from preprint). Clathrin-coated plaques are required for intermediate filament organization. (A) Immunofluorescent staining of α-actinin 2 (green), CHC (magenta), and actin (red) in extensively differentiated mouse primary myotubes. Bars are 10 µm and 2 µm for insets. (B) Survey view of unroofed primary mouse myotube differentiated for 15 days. (C) (D) Higher magnification views corresponding to the boxed regions in b.

 

Why I Selected It – The idea that cells can sense and respond to the physical properties of their microenvironment has always fascinated me. It’s a newer concept that has burst into a huge field of cell biology. We are now getting beyond the initial discoveries of this phenomenon and learning just how much it permeates every part of cell biology. Mechanotransduction is not just a field for cell migration or extracellular matrix people, but is a field for everyone.

Open Questions –

  1. Has YAP/TAZ translocation via endocytosis been directly observed? Is it something that could be observed via live imaging?
  2. Do the clathrin plaques ever recover in size and YAP/TAZ content after extended periods of relaxation?
  3. Could the Dynamin 2 – TAZ interaction be a realistic drug target for centronuclear myopathy?

Related References –

  1. What is YAP/TAZ?
    1. Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediates signaling and mechanotransduction. Exp Cell Res. (2016) 10;343(1):42-53/
  2. What are clathrin plaques?
    1. Lampe M., Vassilopoulos S., Merrifield C. Clathrin coated pits, plaques and adhesion. J Struct Biol. (2016) 196(1):48-56.
  3. Mutations in Dynamin 2 cause centronuclear myopathy
    1. Bitoun M., Maugenre S., Jeannet PY., Lacene E., Ferrer X., Laforet P., Martin JJ., Laporte J., Lochmuller H., Beggs AH., Fardeau M., Eymard B., Romero NB., Guicheney P. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet. (2005) 37(11):1207-9.

 

Posted on: 6th June 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Microfluidic protein isolation and sample preparation for high resolution cryo-EM

    Claudio Schmidli, Stefan Albiez, Luca Rima, et al.



    Selected by David Wright

    ENDOSOMAL MEMBRANE TENSION CONTROLS ESCRT-III-DEPENDENT INTRA-LUMENAL VESICLE FORMATION

    Vincent Mercier, Jorge Larios, Guillaume Molinard, et al.



    Selected by Nicola Stevenson

    1

    Planar differential growth rates determine the position of folds in complex epithelia

    Melda Tozluoğlu, Maria Duda, Natalie J Kirkland, et al.

    AND

    Buckling of epithelium growing under spherical confinement

    Anastasiya Trushko, Ilaria Di Meglio, Aziza Merzouki, et al.



    Selected by Sundar Naganathan

    2

    Microtubules stabilize intercellular contractile force transmission during tissue folding



    Selected by Ivana Viktorinová

    Dynamic Aha1 Co-Chaperone Binding to Human Hsp90

    Javier Oroz, Laura J Blair, Markus Zweckstetter



    Selected by Reid Alderson

    1

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Joseph Jose Thottacherry

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho Baek, Matthew S Graus, et al.



    Selected by Lars Hubatsch

    Phase transition and amyloid formation by a viral protein as an additional molecular mechanism of virus-induced cell toxicity

    Edoardo Salladini, Claire Debarnot, Vincent Delauzun, et al.



    Selected by Tessa Sinnige

    Single molecule localization microscopy with autonomous feedback loops for ultrahigh precision

    Simao Coelho, Jongho baek, Matthew S Graus, et al.



    Selected by Sam Barnett

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy

    Carlo Bevilacqua, Héctor Sánchez Iranzo, Dmitry Richter, et al.



    Selected by Stephan Daetwyler

    1

    Also in the cell biology category:

    ATAT1-enriched vesicles promote microtubule acetylation via axonal transport

    Aviel Even, Giovanni Morelli, Chiara Scaramuzzino, et al.



    Selected by Stephen Royle

    1

    HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly

    C. Favard, J. Chojnacki, P. Merida, et al.



    Selected by Amberley Stephens

    Hepatocyte-specific deletion of Pparα promotes NASH in the context of obesity

    Marion Regnier, Arnaud Polizzi, Sarra Smati, et al.



    Selected by Pablo Ranea Robles

    Mitochondrial biogenesis is transcriptionally repressed in lysosomal lipid storage diseases

    King Faisal Yambire, Lorena Fernandez-Mosquera, Robert Steinfeld, et al.



    Selected by Sandra Franco Iborra

    1

    Thyroid hormone regulates distinct paths to maturation in pigment cell lineages

    Lauren Saunders, Abhishek Mishra, Andrew J Aman, et al.



    Selected by Hannah Brunsdon

    1

    Kinesin-6 Klp9 plays motor-dependent and -independent roles in collaboration with Kinesin-5 Cut7 and the microtubule crosslinker Ase1 in fission yeast

    Masashi Yukawa, Masaki Okazaki, Yasuhiro Teratani, et al.



    Selected by I. Bouhlel

    A pair of E3 ubiquitin ligases compete to regulate filopodial dynamics and axon guidance

    Nicholas P Boyer, Laura E McCormick, Fabio L Urbina, et al.



    Selected by Angika Basant

    1

    SorCS1-mediated Sorting of Neurexin in Dendrites Maintains Presynaptic Function

    Luis Filipe Ribeiro, Ben Verpoort, Julie Nys, et al.



    Selected by Carmen Adriaens

    1

    ENDOSOMAL MEMBRANE TENSION CONTROLS ESCRT-III-DEPENDENT INTRA-LUMENAL VESICLE FORMATION

    Vincent Mercier, Jorge Larios, Guillaume Molinard, et al.



    Selected by Nicola Stevenson

    1

    Microtubules stabilize intercellular contractile force transmission during tissue folding



    Selected by Ivana Viktorinová

    Synthetic pluripotent bacterial stem cells

    Sara Molinari, David L. Shis, James Chappell, et al.



    Selected by Lorenzo Lafranchi

    A DNA-based voltmeter for organelles

    Anand Saminathan, John Devany, Kavya S Pillai, et al.



    Selected by Robert Mahen

    1

    Central spindle microtubules are strongly coupled to chromosomes during both anaphase A and anaphase B

    Che-Hang Yu, Stefanie Redemann, Hai-Yin Wu, et al.



    Selected by Federico Pelisch

    1

    Cell growth dilutes the cell cycle inhibitor Rb to trigger cell division

    Evgeny Zatulovskiy, Daniel F. Berenson, Benjamin R. Topacio, et al.



    Selected by Zaki Ahmad

    1

    Minimal membrane interactions conferred by Rheb C-terminal farnesylation are essential for mTORC1 activation

    Shawn M Ferguson, Brittany Angarola



    Selected by Sandra Malmgren Hill

    2

    Mechanical Stretch Kills Transformed Cancer Cells

    Ajay Tijore, Mingxi Yao, Yu-Hsiu Wang, et al.



    Selected by Vibha SINGH
    Close