PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

Catherine M Buckley, Victoria L Heath, Aurelie Gueho, Cristina Bosmani, Paulina Knobloch, Phumzile Sikakana, Nicolas Personnic, Stephen K Dove, Robert H Michell, Roger Meier, Hubert Hilbi, Thierry Soldati, Robert H Insall, Jason King

Preprint posted on July 17, 2018

A battle for survival: PIKfyve ensures phagosome maturation, enhancing professional phagocyte ability to effectively kill bacteria.

Selected by Giuliana Clemente

Categories: cell biology

Context and Background:

Intracellular pathogens, such as Legionella pneumophila, are among the major causes of disease and death. Pathogens hijack host cells trying to create an intracellular environment favourable for their replication. Host cells on other hand have to develop and refine defence mechanisms to beat the invaders to the punch and get rid of them before the infection spreads (Flannagan RS et al., 2009).

Phagocytosis plays a crucial role in the host-pathogen interaction as it represents the main mechanism of clearance and degradation of the not-self. For this reason, extensive research has been funnelled into this field to grasp the phases of phagosome maturation, in a journey that from the early step of ingestion ultimately leads to the digestion of the invader. Shortly after the internalisation of a particle, the phagosome is acidified and loaded with antimicrobial peptides and hydrolases, thereby creating a non-permissive environment for pathogen survival. The timing of the delivery of these components to the phagosome is strictly regulated and relies on the interaction with phosphoinositol lipids (PIPs) (Bohdanowicz M. et al., 2013). Therefore, understanding the mechanism of PIPs production and how this relates to phagosome maturation can be extremely beneficial and clinically relevant.

The preprint in brief:

The work of Buckley at al. underlines the importance of the lipid kinase PIKfyve in early-phagosome maturation and pathogen killing, using Dictyostelium as a model system. The results reported in this preprint highlight a role for PIKfyve in the delivery of the V-ATPase pump and hydrolytic enzymes to the phagosome, favouring the formation of an acidic environment hostile to bacteria. PIP production is therefore essential for shielding host cells from a wide array of microbes.

Key points:

Laboratory strains of Dictyostelium can either feed by micropinocytosis or by internalising bacteria. The group exploit this characteristic to study host-pathogen interaction and address how PIKfyve kinase activity favours the host. By analysing the ability of a PIKfyve mutant strain to reduce the turbidity of a bacterial suspension and to grow on bacteria, they quickly realised that PIKfyve mutants effectively uptook bacteria but their growth rate was reduced, meaning that one or more steps in phagosome maturation was altered. The work goes on taking a closer look at the process and analysing the rate of phagosome acidification.

They found that, in the absence of PIKfyve, acidification was much slower and not as efficient as in the control. This acidification defect was due to a much slower recruitment of the proton pump V-ATPase to the phagosome, as assessed by imaging the dynamics of GFP-tagged versions of the VTPase subunits VatM and VatB (GFP-VatM and GFP-VatB, respectively). In addition, PIKfyve mutant cells showed a lack of proteolitic activity despite the levels of hydrolytic enzymes, such as Cathepsin D being unchanged (if not higher) compared to control, suggesting again an improper delivery to the phagosome.

Given that acidification and proteolitic activity contribute to bacteria killing, Buckley at al. tested how PIKfyve defective cells performed when plated on layers of a panel of different non-pathogenic bacteria. PIKfyve mutants were unable to efficiently grow on any of the bacteria tested and phagocytosed bacteria survived more than 3 times longer than in the control. All together, these data suggest that PIKfyve has a general role in killing and digesting a broad range of microbes.

Is PIKfyve activity required to protect host cells from infection? To address this final but yet crucial point, PIKfyve mutant cells were grown in the presence of the opportunistic human pathogen Legionella pneumophila. As expected, bacteria uptake was unperturbed, but again, the invaders survived much longer in PIKfyve mutant cells. Most importantly, the group proved that the pathogen grew much more rapidly and to a much greater extent in cells lacking PIKfyve activity than in control, meaning that in the absence of PIKfyve Legionella stands a much better chance of creating a permissive environment for its own replication.


Phagosome maturation requires the sequential fusion with several membrane compartments until the formation of the phagolysosome, responsible for the final degradation of the invader. Several pathogens therefore have developed the ability to alter the composition and levels of phosphoinositol lipids on the phagosome membrane to avoid its fusion with the lysosome, thereby escaping digestion. Understanding how PIP levels are controlled is therefore clinically relevant and important to get a better understanding of host-pathogen interaction.

Questions to the authors:

  • Is the mechanism of how bacteria manipulate PIP levels known? Could they achieve this by inactivating PIKfyve kinase?
  • SNAREs and Rabs are important for membrane fusion. Is their localisation to phagosomes altered in PIKfyve-null cells? Is there any specific SNARE/Rab affected?
  • In Drosophila, highly vacuolated macrophages are dramatically impaired in their migration (Evans I. et al. 2013). Given that PIKfyve-null cells are highly vacuolated and the enzyme evolutionary conserved, can you predict whether, as a secondary effect, the inhibition of the kinase would impair the patrolling activity of immune cells?


  • Flannagan RS, Cosio G, Grinstein S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat Rev Microbiol. 2009;7(5):355-66. Epub 2009/04/17.
  • Bohdanowicz M, Grinstein S. Role of phospholipids in endocytosis, phagocytosis, and macropinocytosis. Physiological reviews. 2013; 93(1): 69-106.
  • Evans IR, Ghai PA, Urbančič V, Tan KL, Wood W. SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila. Cell Death Differ. 2013 May; 20 (5): 709-20.



Posted on: 13th September 2018 , updated on: 17th September 2018

Read preprint (No Ratings Yet)

  • Author's response:

    Jason King shared

    • Is the mechanism of how bacteria manipulate PIP levels known? Could they achieve this by inactivating PIKfyve kinase?
      We think this is highly likely as several bacteria have been shown to use the manipulation of phosphoinositide signalling to promote virulence. For example the Salmonella virulence effector SopB has phosphoinositide phosphatase activity which manipulates the host to drive both invasion and intracellular survival (Mallo et al. JCB  2008 Aug 25;182(4):741-52). Legionella also have multiple virulence effectors that  are known to interact with and manipulate both  PI(3)P and PI(4)P (see Steiner B et al. Int J Med Microbiol. 2017 Aug 16. pii: S1438-4221(17)30291-6 for a recent review). We found that blocking PIKfyve and therefore PI(3,5)P2 formation prevents cells from killing every bacteria we challenged them with so it would be quite surprising if this hadn’t been exploited by evolution somewhere.
    • SNAREs and Rabs are important for membrane fusion. Is their localisation to phagosomes altered in PIKfyve-null cells? Is there any specific SNARE/Rab affected?
      This is a good question, and something we are still exploring further. Interestingly, whilst we find that PIKfyve is important for the delivery of specific components such as the V-ATPase and proteases, other proteins and the overall timing of phagosome maturation appears to be relatively normal. Therefore it seems unlikely that the core Rab’s such as Rab5 and 7 will be altered in these cells, but we predict specific roles for a subset of the trafficking machinery that is dependent on PIKfyve. This is still very much work in progress though.
    • In Drosophila, highly vacuolated macrophages are dramatically impaired in their migration (Evans I. et al. 2013). Given that PIKfyve-null cells are highly vacuolated and the enzyme evolutionary conserved, can you predict whether, as a secondary effect, the inhibition of the kinase would impair the patrolling activity of immune cells? 
    This is an interesting idea, and not something we have considered. We clearly see that Inhibition of PIKfyve clogs phagocytes up when they have to do a lot of digestion, just like the fly macrophages in the paper you refer to.  So its entirely possible that cell migration would also be effected. It’s always fun to experiment with different organisms so perhaps we should have a look!

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.

    Selected by Yen-Chung Chen

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.

    Selected by Leighton Daigh


    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.


    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor

    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.

    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.

    Selected by Ashrifia Adomako-Ankomah


    mRNA localisation in endothelial cells regulates blood vessel sprouting

    Guilherme Costa, Nawseen Tarannum, Shane Herbert

    Selected by Andreas van Impel

    Local protein synthesis in axon terminals and dendritic spines differentiates plasticity contexts

    Anne-Sophie Hafner, Paul Donlin-Asp, Beulah Leitch, et al.

    Selected by Dipen Rajgor

    The cytoskeleton as a smart composite material: A unified pathway linking microtubules, myosin-II filaments and integrin adhesions

    Nisha Mohd Rafiq, Yukako Nishimura, Sergey V. Plotnikov, et al.

    Selected by Coert Margadant

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.

    Selected by Teresa Rayon

    Profiling the surface proteome identifies actionable biology for TSC1 mutant cells beyond mTORC1 signaling

    Junnian Wei, Kevin K. Leung, Charles Truillet, et al.

    Selected by Rob Hynds


    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.

    Selected by Angika Basant


    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.

    Selected by Sundar Naganathan

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.

    Selected by Gautam Dey


    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.

    Selected by Leighton Daigh

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.

    Selected by Ana Patricia Ramos

    JNK-mediated spindle reorientation in stem cells promotes dysplasia in the aging intestine

    Daniel Hu, Heinrich Jasper

    Selected by Maiko Kitaoka