Menu

Close

Polarization of Myosin II refines tissue material properties to buffer mechanical stress.

Maria Duda, Nargess Khalilgharibi, Nicolas Carpi, Anna Bove, Matthieu Piel, Guillaume Charras, Buzz Baum, Yanlan Mao

Preprint posted on December 31, 2017 https://www.biorxiv.org/content/early/2017/12/31/241497

How does a developing tissue protects against mechanical perturbations? Duda et al. preprint shown that Myosin II forms asymmetric cables upon tissue stretch. Surprisingly,this response depends on actin remodelling and not on main MyosinII regulators

Selected by Yara E. Sánchez Corrales

Background

It has been very challenging to study the effects of mechanics in developmental processes because it is difficult to measure forces directly in living tissues and it is unclear whether tissue responses are a cause or a consequence of increased tension. Duda et al. preprint developed a novel approach to study tension-induced properties in a developing tissue. Using a stretching device, they were able to apply specific amounts of tension to a Drosophila wing imaginal disc and assess properties of the tissue subjected to these mechanical stimuli over short and long time scales.

Key findings

They found that Myosin II distributed asymmetrically, forming cable-like structures, parallel to the axis of the stretch (Figure 1). Over short time scales (~20 min), Myosin II polarity was proportional to the amount of stress and strain and followed cell shape. After a prolonged stretch (~3 hours), they observed a gradual decrease in Myosin II asymmetry while cell deformation was maintained. These results suggest that tension-induced Myosin II polarity followed the cell and tissue deformation over short time scales.

Figure 1. A and D) Tissue before (anchor) and after stretch (stretch); A’) Zoom from the panel A showing that Myosin II polarises upon stretch (red channel); B) Schematic of Myosin expression before (left) and after stretch (right). Panels are from the Figure 1 and 2 of the preprint; reproduced with permission. 

Why does the stretched tissue form Myosin II cables? An interesting suggestion is that this is a fast response that stiffens the tissue in order to help buffering mechanical perturbations and preserve tissue shape. When the cables were prevented to form in the whole disc pouch (by downregulating Diaphanous using RNAi), the tissue changed the aspect ratio and Myosin II depleted cells (by downregulating Myosin using zip-RNAi) became softer and more deformable.

I found very surprising that Myosin II polarisation upon stretching did not depend on main Myosin regulators (Rok, or MLCK) but required assembly/disassembly of linear actin cables generated by the formin Diaphanous.

What I like about this preprint and open questions

In my opinion, this study is important because it shows that Myosin II itself can polarise in response to mechanical stimuli in an actin dynamics dependent manner.
It would be interesting to know the localisation of Diaphanous before and after stretching. Also, I think it would be important to study the interplay of regulators and time scales over which the Myosin II/Diaphanous pathway operates in comparison to the canonical regulation.

Another important aspect of this study is that it pioneers the use of devices for applying specific levels of tension onto a developing tissue. It would be exciting to extend this approach of using novel technologies for applying specific mechanical inputs to studying the cellular and molecular basis of mechanical response during development in other tissues in Drosophila as well as other organisms.

 

 

 

 

Tags: cofilin, formin, myosin

Posted on: 18th February 2018 , updated on: 19th February 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Also in the developmental biology category:

    Functional characterization of Arabidopsis ARGONAUTE 3 in reproductive tissue

    Pauline E Jullien, Stefan Grob, Antonin Marchais, et al.



    Selected by Chandra Shekhar Misra

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Suppressor of Fused controls perinatal expansion and quiescence of future dentate adult neural stem cells

    Hirofumi Noguchi, Jesse Garcia Castillo, Kinichi Nakashima, et al.



    Selected by Ekaterina Dvorianinova

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Close