Menu

Close

Tunable molecular tension sensors reveal extension-based control of vinculin loading

Andrew S LaCroix, Andrew D Lynch, Matthew E Berginski, Brenton D Hoffman

Preprint posted on February 12, 2018 https://www.biorxiv.org/content/early/2018/02/12/264549

The tension sensors of the future - better optimized genetically encoded probes reveal novel mechanistic detail in how mechanotransduction works

Selected by Amanda Haage

Categories: biophysics, cell biology

Why This Is CoolIt is now widely accepted that besides responding to chemical cues in their environment, cells also participate in mechanotransduction, a process by which they sense and respond to physical aspects of the environment (i.e. matrix stiffness or shear stress, etc.). The main way cells do this is through mechanosensitive signaling or the conformational change of load-bearing proteins in response to force. The main way this has been studied is through FRET-based tension sensors that are genetically encoded into those load-bearing proteins. The problem addressed by this work is that to date, the design of these tension sensors has been based on models created in cell-free systems, but they are then exclusively used in cells. Here they provide a novel and validated method for predicting tension sensor sensitivity in cells. This allows them to create an optimized tension sensor for the load-bearing protein vinculin that is determined to be 300% better by their calculations. They use this optimized sensor to demonstrate a gradient of forces across focal adhesions at the cell periphery. They are also able to use sensors of varying length to determine that protein extension, rather than the force experienced by the protein, may be the major mechanism of mechanical signaling in cells. This work provides an incredibly useful tool in mapping out the future of precise new sensor design. It demonstrates the usefulness of optimized sensors to uncover new mechanisms of mechanical signaling.

 

Fig. 1 – (A) Design and characterization of tunable FRET-based molecular tension sensors. Sensor function depends on the Förster radius of the chosen FRET pair (B) as well as the length (C) and stiffness (D) of the extensible polypeptide domain.

 

Why I Selected ItI think the model presented here will quickly be adopted as the new standard in molecular tension sensor design. They have essentially eliminated the previous system of designing that was based on literature guesswork and then checking if sensors work through extensive cellular characterization. As someone interested in mechanobiology, I look forward to seeing a new crop of tension sensors that are designed based on this model and expanded to other load-bearing proteins.

 Open Questions

  • Are there any reasons the principles of tension sensor design discussed here could not be expanded to proteins other than vinculin?
  • In which cellular contexts would either an extension- or force-based control mechanism be more advantageous? Why would this be a context-specific way to modulate mechanical signaling?
  • Will tension sensors ever be useful in vivo?

Related Research

  • The first calibrated genetically-encoded molecular tension sensor module & the original vinculin tension sensor
    • Grashoff, C., Hoffman, B. D., Brenner, M. D., Zhou, R., Parsons, M., Yang, M. T., McLean, M. A., Sligar, S. G., Chen, C. S., Ha, T., Schwartz, M. A. (2010). Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature, 466: 263-266. doi:10.1038/nature09198
  • Review of the field and current limitations
    • Freikamp, A., Mehlich, A., Klingner, C., Grashoff, C. (2016b). Investigating piconewton forces in cells by FRET-based molecular force microscopy. J Struct Biol. doi:10.1016/j.jsb.2016.03.011

 

Tags: cell-ecm adhesion, mechanotransduction, protein biology

Posted on: 4th March 2018

Read preprint (No Ratings Yet)




  • Author's response

    Brent Hoffman shared

    1. The new modules can be applied to any existing tension sensor. There are always challenges associated with making a tension sensor for a new protein, as a significant number of controls have to be done to ensure that the insertion of the tension sensing module does not affect the function of the protein to be studied. In this regard, the modules developed in this work have all the same issues as the other published modules.
    2. Great question. We are working on it now
    3. While not our work, there are several examples of the tension sensor being useful in vivo. Here are two examples. Some of the papers are quite recent.
      1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4118667/. Although this study has recently been challenged: https://www.nature.com/articles/s41598-017-14136-y
      2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680264/

    Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

    Nicole Traeber, Klemens Uhlmann, Salvatore Girardo, et al.



    Selected by Jacky G. Goetz

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant

    Vilius Kurauskas, Audrey Hessel, François Dehez, et al.

    AND

    Major concerns with the integrity of the mitochondrial ADP/ATP carrier in dodecyl-phosphocholine used for solution NMR studies

    Martin S. King, Paul G. Crichton, Jonathan J. Ruprecht, et al.



    Selected by Reid Alderson

    1

    Mechanosensitive binding of p120-Catenin at cell junctions regulates E-Cadherin turnover and epithelial viscoelasticity

    K. Venkatesan Iyer, Romina Piscitello-Gómez, Frank Jülicher, et al.



    Selected by Ivana Viktorinová

    Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

    Augusto Berrocal, Nicholas C Lammers, Hernan G Garcia, et al.



    Selected by Erik Clark

    Structural Basis of Tubulin Recruitment and Assembly by Tumor Overexpressed Gene (TOG) domain array Microtubule Polymerases

    Stanley Nithiananatham, Brian Cook, Fred Chang, et al.

    AND

    Roles for tubulin recruitment and self-organization by TOG domain arrays in Microtubule plus-end tracking and polymerase

    Brian Cook, Fred Chang, Ignacio Flor-Parra, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    Clathrin plaques form mechanotransducing platforms

    Agathe Franck, Jeanne Laine, Gilles Moulay, et al.



    Selected by Amanda Haage

    Molecular dynamics simulations disclose early stages of the photo-activation of cryptochrome 4

    Daniel R. Kattnig, Claus Nielsen, Ilia A. Solov'yov



    Selected by Miriam Liedvogel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Two contractile pools of actomyosin distinctly load and tune E-cadherin levels during morphogenesis

    Girish R. Kale, Xingbo Yang, Jean-Marc Philippe, et al.



    Selected by Arnaud Monnard

    Feedback control of neurogenesis by tissue packing

    Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, et al.



    Selected by Sarah Morson

    1

    Also in the cell biology category:

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.



    Selected by Yen-Chung Chen

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Catherine M Buckley, Victoria L Heath, Aurelie Gueho, et al.



    Selected by Giuliana Clemente

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    mRNA localisation in endothelial cells regulates blood vessel sprouting

    Guilherme Costa, Nawseen Tarannum, Shane Herbert



    Selected by Andreas van Impel

    Local protein synthesis in axon terminals and dendritic spines differentiates plasticity contexts

    Anne-Sophie Hafner, Paul Donlin-Asp, Beulah Leitch, et al.



    Selected by Dipen Rajgor

    The cytoskeleton as a smart composite material: A unified pathway linking microtubules, myosin-II filaments and integrin adhesions

    Nisha Mohd Rafiq, Yukako Nishimura, Sergey V. Plotnikov, et al.



    Selected by Coert Margadant

    Quantitative, real-time, single cell analysis in tissue reveals expression dynamics of neurogenesis

    Cerys S Manning, Veronica Biga, James Boyd, et al.



    Selected by Teresa Rayon

    Profiling the surface proteome identifies actionable biology for TSC1 mutant cells beyond mTORC1 signaling

    Junnian Wei, Kevin K. Leung, Charles Truillet, et al.



    Selected by Rob Hynds

    1

    Optogenetic dissection of mitotic spindle positioning in vivo

    Lars-Eric Fielmich, Ruben Schmidt, Daniel J Dickinson, et al.



    Selected by Angika Basant

    1

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Moving beyond P values: Everyday data analysis with estimation plots

    Joses Ho, Tayfun Tumkaya, Sameer Aryal, et al.



    Selected by Gautam Dey

    1

    A limited number of double-strand DNA breaks are sufficient to delay cell cycle progression.

    Jeroen van den Berg, Anna G. Manjon, Karoline Kielbassa, et al.



    Selected by Leighton Daigh

    Optogenetic manipulation of medullary neurons in the locust optic lobe

    Hongxia Wang, Richard B. Dewell, Markus U. Ehrengruber, et al.



    Selected by Ana Patricia Ramos
    Close