Menu

Close

3D Tissue elongation via ECM stiffness-cued junctional remodeling

Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, David Bilder

Preprint posted on August 06, 2018 https://www.biorxiv.org/content/early/2018/08/06/384958

A mechanochemical pathway drives tissue elongation in edgeless epithelia.

Selected by Sundar Naganathan

Background

The Drosophila egg chamber or follicle transforms from a spherical shape to a tube-like ellipsoidal shape over several hours. The follicle and many other tubular organs are examples of edgeless epithelia. In the Drosophila egg chamber, it was previously shown that PCP signaling, which is known to drive elongation in multiple contexts during embryo development across species, plays a minimal role (Crest J. et al., 2017). Moreover, there is no evidence of myosin relocalization during follicle elongation. How do tubular organs such as the egg chamber elongate?

It was recently shown that the instructive cues arise from gradients in stiffness along the extracellular matrix (ECM) (Crest J. et al., 2017). In this model, a gradient of ECM stiffness provides differential resistance to luminal expansion, leading to tissue elongation. How do cells respond to this external stiffness gradient that ultimately drives tissue elongation? The authors uncover a mechanochemical signaling pathway that translates the external stiffness gradient into altered cadherin trafficking at adherens junctions, which facilitates tissue elongation.

Key findings

The authors imaged follicle morphogenesis from stage (st.) 4 to 8 of egg chamber development using confocal as well as light sheet microscopy and map projected the resulting 3D data onto a 2D surface. They first confirmed and quantified more accurately metrics of cell and tissue state properties over time, such as cell number, follicle volume, and apical and basal surface area. They then also characterized dynamic cellular behaviors accompanying follicle elongation and found that oriented cell divisions along the elongation axis as well as cell intercalations occurred. Moreover, a population of anterior cells aligned their cell elongation axis to that of the tissue during st.7-8, which is coincident with a period of post-mitotic tissue elongation.

To assess which of these cell behaviors play a major role in tissue elongation, the authors analyzed elongation in different mutants. Inhibition of mitosis did not lead to elongation defects, in spite of a reduced cell number. On the other hand, cell shape changes including a reorientation towards the AP axis (elongation axis) and cell intercalation from the equatorial to the AP axis seem to be important, as cadherin mutants (E-Cad) that affect these two quantities have tissue elongation defects.

Previously, it was shown that a graded ECM stiffness is important for follicle elongation. How is the external stiffness gradient coupled to cell reorientations and intercalations? From an ongoing RNAi screen in the lab, the authors selected Rack1, a scaffolding protein that maintains Src tyrosine kinase in an inactive state. Rack1 mutants have wild type-like graded stiffness but nevertheless display tissue elongation defects. Finally, by analyzing the phosphorylation status of Src and by performing FRAP experiments on GFP-tagged Ecad, the authors uncover a mechanotransduction pathway, whereby Src phosphorylation and thus its activity is coupled to the stiffness gradient of the ECM and affects Ecad trafficking to adherens junctions via Rack1. The dynamics of Ecad at the junctions affects cell reorientation and intercalation. The authors also discover that reorientation of anterior cells during st. 7-8 plays a major role in elongation, as local depletion of Rack1 in the anterior leads to severe tissue-scale elongation defects.

Why I chose this preprint?

It is an exciting time for developmental biology with advanced microscopy and image analysis algorithms facilitating a 3D analysis of developing tissues. The highlighted preprint adds weight to this statement by performing a global spatiotemporal analysis of follicle morphogenesis using advanced methodologies. Importantly, the quantitative analysis adds yet another feather to an increasing repertoire of developmental processes where mechanics and chemistry are coupled. This so-called mechanochemical coupling (Gross P. et al., 2017) seems to be at the forefront of emergence of shape and form during embryo development across diverse species. The preprint also uncovers distinct mechanisms by which edgeless epithelia such as Drosophila follicle and trachea undergo morphogenesis.

Open questions

It was discovered that the anterior follicle cells drive tissue-scale elongation by undergoing cell shape changes and by changing their orientation towards the elongation axis. This shows that a local change in cell orientation leads to a global change in tissue shape. Can reorientation be triggered in the posterior follicle cells leading to a similar morphogenesis of the egg chamber? On a related note, is the curvature of the pole important in transducing the mechanochemical effect? Finally, based on the reported experiments, it will be exciting to develop a continuum mechanochemical model to precisely describe elongation dynamics in edgeless epithelia.

References

  1. Crest J. et al., Organ sculpting by patterned extracellular matrix stiffness, eLife, 2017.
  2. Gross P. et al., How active mechanics and regulatory biochemistry combine to form patterns in development, Annu. Rev. Biophys., 2017.

Tags: map projection, mechanics, morphogenesis, spim

Posted on: 1st October 2018

Read preprint (No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the biophysics category:

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

    Nicole Traeber, Klemens Uhlmann, Salvatore Girardo, et al.



    Selected by Jacky G. Goetz

    Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo.

    Jonathan B Michaux, Francois B Robin, William M McFadden, et al.



    Selected by Sundar Naganathan

    Dynamics and interactions of ADP/ATP transporter AAC3 in DPC detergent are not functionally relevant

    Vilius Kurauskas, Audrey Hessel, François Dehez, et al.

    AND

    Major concerns with the integrity of the mitochondrial ADP/ATP carrier in dodecyl-phosphocholine used for solution NMR studies

    Martin S. King, Paul G. Crichton, Jonathan J. Ruprecht, et al.



    Selected by Reid Alderson

    1

    Mechanosensitive binding of p120-Catenin at cell junctions regulates E-Cadherin turnover and epithelial viscoelasticity

    K. Venkatesan Iyer, Romina Piscitello-Gómez, Frank Jülicher, et al.



    Selected by Ivana Viktorinová

    Kinetic sculpting of the seven stripes of the Drosophila even-skipped gene

    Augusto Berrocal, Nicholas C Lammers, Hernan G Garcia, et al.



    Selected by Erik Clark

    Structural Basis of Tubulin Recruitment and Assembly by Tumor Overexpressed Gene (TOG) domain array Microtubule Polymerases

    Stanley Nithiananatham, Brian Cook, Fred Chang, et al.

    AND

    Roles for tubulin recruitment and self-organization by TOG domain arrays in Microtubule plus-end tracking and polymerase

    Brian Cook, Fred Chang, Ignacio Flor-Parra, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    Clathrin plaques form mechanotransducing platforms

    Agathe Franck, Jeanne Laine, Gilles Moulay, et al.



    Selected by Amanda Haage

    Molecular dynamics simulations disclose early stages of the photo-activation of cryptochrome 4

    Daniel R. Kattnig, Claus Nielsen, Ilia A. Solov'yov



    Selected by Miriam Liedvogel

    1

    Cellular Crowding Influences Extrusion and Proliferation to Facilitate Epithelial Tissue Repair

    Jovany Jeomar Franco, Youmna Maryline Atieh, Chase Dallas Bryan, et al.



    Selected by Helen Weavers

    Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

    John K Eykelenboom, Marek Gierlinski, Zuojun Yue, et al.

    AND

    Quantitative imaging of chromatin decompaction in living cells

    Elisa Dultz, Roberta Mancini, Guido Polles, et al.



    Selected by Carmen Adriaens, Gautam Dey

    Tissue flow induces cell shape changes during organogenesis

    Gonca Erdemci-Tandogan, Madeline J.Clark, Jeffrey D. Amack, et al.



    Selected by Jacky G. Goetz

    Two contractile pools of actomyosin distinctly load and tune E-cadherin levels during morphogenesis

    Girish R. Kale, Xingbo Yang, Jean-Marc Philippe, et al.



    Selected by Arnaud Monnard

    Feedback control of neurogenesis by tissue packing

    Tom W. Hiscock, Joel B. Miesfeld, Kishore R. Mosaliganti, et al.



    Selected by Sarah Morson

    1

    Tunable molecular tension sensors reveal extension-based control of vinculin loading

    Andrew S LaCroix, Andrew D Lynch, Matthew E Berginski, et al.



    Selected by Amanda Haage

    1

    Also in the cell biology category:

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Lysosome exocytosis is required for mitosis

    Charlotte Nugues, Nordine Helassa, Robert Burgoyne, et al.



    Selected by claudia conte

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    Transient intracellular acidification regulates the core transcriptional heat shock response

    Catherine G Triandafillou, Christopher D Katanski, Aaron R Dinner, et al.



    Selected by Srivats Venkataramanan

    1

    Budding yeast complete DNA replication after chromosome segregation begins

    Tsvetomira Ivanova, Michael Maier, Alsu Missarova, et al.



    Selected by Gautam Dey, Maiko Kitaoka

    Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing

    Qingyun Li, Zuolin Cheng, Lu Zhou, et al.



    Selected by Zheng-Shan Chong

    SABER enables highly multiplexed and amplified detection of DNA and RNA in cells and tissues

    Jocelyn Y. Kishi, Brian J. Beliveau, Sylvain W. Lapan, et al.



    Selected by Yen-Chung Chen

    PIKfyve/Fab1 is required for efficient V-ATPase and hydrolase delivery to phagosomes, phagosomal killing, and restriction of Legionella infection

    Catherine M Buckley, Victoria L Heath, Aurelie Gueho, et al.



    Selected by Giuliana Clemente

    1

    Memory sequencing reveals heritable single cell gene expression programs associated with distinct cellular behaviors

    Sydney M Shaffer, Benjamin L Emert, Ann E. Sizemore, et al.



    Selected by Leighton Daigh

    1

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    Neural crest cells regulate optic cup morphogenesis by promoting extracellular matrix assembly

    Chase Dallas Bryan, Rebecca Lynne Pfeiffer, Bryan William Jones, et al.



    Selected by Ashrifia Adomako-Ankomah

    1

    mRNA localisation in endothelial cells regulates blood vessel sprouting

    Guilherme Costa, Nawseen Tarannum, Shane Herbert



    Selected by Andreas van Impel

    Also in the developmental biology category:

    Revealing the nanoscale morphology of the primary cilium using super-resolution fluorescence microscopy

    Joshua Yoon, Colin J. Comerci, Lucien E. Weiss, et al.



    Selected by Gautam Dey

    Signaling dynamics control cell fate in the early Drosophila embryo

    Heath E Johnson, Stanislav Y Shvartsman, Jared E Toettcher



    Selected by Yara E. Sánchez Corrales

    1

    Three-dimensional tissue stiffness mapping in the mouse embryo supports durotaxis during early limb bud morphogenesis

    Min Zhu, Hirotaka Tao, Mohammad Samani, et al.



    Selected by Natalie Dye

    PUMILIO hyperactivity drives premature aging of Norad-deficient mice

    Florian Kopp, Mehmet Yalvac, Beibei Chen, et al.



    Selected by Carmen Adriaens

    Synergy with TGFβ ligands switches WNT pathway dynamics from transient to sustained during human pluripotent cell differentiation

    Joseph Massey, Yida Liu, Omar Alvarenga, et al.



    Selected by Pierre Osteil

    1

    3D Tissue elongation via ECM stiffness-cued junctional remodeling

    Dong-Yuan Chen, Justin Crest, Sebastian J Streichan, et al.



    Selected by Sundar Naganathan

    EGFR signaling coordinates patterning with cell survival during Drosophila epidermal development

    Samuel Henry Crossman, Sebastian J Streichan, Jean-Paul Vincent



    Selected by Sarah Bowling

    1

    Damage-induced reactive oxygen species enable zebrafish tail regeneration by repositioning of Hedgehog expressing cells.

    Henry Roehl, Montserrat Garcia Romero, Gareth McCathie, et al.



    Selected by Alberto Rosello-Diez

    Arterio-Venous Remodeling in the Zebrafish Trunk Is Controlled by Genetic Programming and Flow-Mediated Fine-Tuning

    Ilse Geudens, Baptiste Coxam, Silvanus Alt, et al.



    Selected by Andreas van Impel

    Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing

    Qingyun Li, Zuolin Cheng, Lu Zhou, et al.



    Selected by Zheng-Shan Chong

    Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development

    Nicole Traeber, Klemens Uhlmann, Salvatore Girardo, et al.



    Selected by Jacky G. Goetz

    millepattes micropeptides are an ancient developmental switch required for embryonic patterning

    Suparna Ray, Miriam I Rosenberg, Hélène Chanut-Delalande, et al.



    Selected by Erik Clark

    Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

    Kerstin Klinkert, Nicolas Levernier, Peter Gross, et al.

    AND

    Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

    Sachin Kotak, Sukriti Kapoor



    Selected by Giuliana Clemente

    Anti-angiogenic effects of VEGF stimulation on endothelium deficient in phosphoinositide recycling

    Amber N Stratman, Olivia M Farrelly, Constantinos M Mikelis, et al.



    Selected by Coert Margadant

    SOL1 and SOL2 Regulate Fate Transition and Cell Divisions in the Arabidopsis Stomatal Lineage

    Abigail R Simmons, Kelli A Davies, Wanpeng Wang, et al.



    Selected by Martin Balcerowicz

    Analysis of the role of Nidogen/entactin in basement membrane assembly and morphogenesis in Drosophila

    Jianli Dai, Beatriz Estrada, Sofie Jacobs, et al.



    Selected by Nargess Khalilgharibi
    Close