Menu

Close

Aurora A depletion reveals centrosome-independent polarization mechanism in C. elegans

Kerstin Klinkert, Nicolas Levernier, Peter Gross, Christian Gentili, Lukas von Tobel, Marie Pierron, Coralie Busso, Sarah Herrman, Stephan W Grill, Karsten Kruse, Pierre Gonczy

Preprint posted on August 09, 2018 https://www.biorxiv.org/content/early/2018/08/09/388918

and

Centrosome Aurora A gradient ensures a single PAR-2 polarity axis by regulating RhoGEF ECT-2 localization in C. elegans embryos

Sachin Kotak, Sukriti Kapoor

Preprint posted on August 21, 2018 https://www.biorxiv.org/content/early/2018/08/21/396721

A new light shines bright in the polarity field: two preprints investigate the contribution of Aurora A in symmetry breaking and polarity establishment in the early C. elegans embryo.

Selected by Giuliana Clemente

Context and Background:

Asymmetric cell division is universally used in development to ensure cell fate diversity and to orchestrate axes formation and embryonic body plan patterning. The early C. elegans embryo is one of the most widely used systems to gain genetic and molecular insights into the processes that underlie symmetry breaking (Rose L. et al., 2014). In this model organism, asymmetric cell division is evident from the very first cleavage of the zygote and goes on for the next 4 rounds, during which the major body axes are established. The A-P axis rises upon fertilisation and the position of the paternal centrosome marks the future posterior side of the embryo. At the molecular level, symmetry breaking derives from a change in the uniform contraction of the acto-myosin cortex, involving the small GTPase RHO-1 and its activator ECT-2. At the onset of polarity establishment, upon a still unknown signal, ECT-2 is displaced from the future posterior cortex and Myosin-II is disassembled, leading to cortex relaxation and increased acto-myosin flow towards the anterior (Motegi F. et al., 2006; Zonies S. et al., 2010). This unbalance favours the recruitment of PAR-2 at the posterior pole while pushing the anterior PAR complex (PAR-3/PAR-6/PKC-3) to the opposite end.

Whether and how centrosomes dictate symmetry breaking and how they signal the cell cortex to recruit polarity complexes is still unclear and under investigation. Two recent preprints from the Gönczy and the Kotak labs look at the centrosome as a signalling hub for the establishment of polarity and identify the Aurora A kinase (AIR-1 in C. elegans) as a central player in polarity establishment.

Key findings:

Both studies start with the observation that inhibition of AIR-1, either by RNAi or using a dead kinase variant, results in the formation of two PAR-2 domains, one at each pole of the zygote. This unusual distribution of PAR-2 is also accompanied by a delocalisation of the anterior PAR-3/PAR-6/PKC-3 complex in the middle, suggesting that, under normal conditions, Aurora A controls the spatial distribution of the PAR complexes within the embryo.

As the cortical acto-myosin flow is critical for the asymmetric distribution of the PAR components, the two groups analyse this variable by image velocimetry (PIV) analysis and found that AIR-1 knockdown results in reduced cortical flow. Specifically, they registered two flows of small intensity that start from both poles and propagate towards the centre. The reduction of cortical flow nicely correlates with no changes in the localisation of Myosin-II at the posterior cortex upon polarity establishment.

Next, both preprints address whether centrosomes play a role in symmetry breaking. Previous studies found these organelles indispensible for setting up polarity in the C. elegans zygote. The work from the Gönczy lab now questions this assumption given that in the AIR-1 RNAi background, in which centrosomes are not functional, polarity is altered but yet established. They observed that eggs fertilised with sperm from such-1 (t1668) mutants (which do not harbour centrioles) still form a PAR-2 crescent either at the anterior or at both poles, indicating that centrioles are not required for symmetry breaking. Nevertheless, the data suggest that localisation of AIR-1 at the centrosome provides a spatial cue to organise a posterior PAR domain. To test this idea, Klinkert et al. force the localisation of a RNAi-resistant AIR-1 to an immature, non-functional centriole (SPD-2 RNAi) to test whether it would rescue the defective asymmetry upon RNAi of endogenous AIR-1. Surprisingly, centrioles lacking SPD-2 establish a unique, posterior PAR2 domain, rescuing the AIR-1 RNAi phenotype. This set of experiments suggests therefore that the C. elegans one-cell embryo has an intrinsic ability to polarise; however, AIR-1 at the centrosome provides the spatial information for proper PAR-2 localisation at the posterior pole, ensuring the uniqueness of symmetry breaking. Kapoor et al. reach a similar conclusion using a different approach. They explore symmetry breaking in zyg-12 mutants, in which centrosomes do not keep their association to the nucleus and move freely in the cytoplasm towards the anterior pole, resulting in an anterior PAR-2 domain. Down-regulation of the kinase leads to anterior and posterior cortical PAR-2 localisation, no matter the position of the centrosome. These results reinforce the notion that centrosomal Aurora A instructs the posterior cortex to allocate PAR-2.

Given that in the absence of centrosomes the zygote is able to self-organise its polarisation, is there any physical property intrinsic to the system that might drive PAR-2 localisation to the cortex? Klinkert et al. set out to answer this question by using triangular PDMS chambers into which squeeze the embryos and developing an integrated physical model for symmetry breaking. Combining these methods, they reach the conclusion that PAR-2 tends to localise to region of high membrane curvature.

Finally to get at the mechanism of how PAR-2 posterior localisation is spatially controlled by Aurora A, Kapoor et al. investigate whether the kinase works upstream of ECT-2 and thus acts as master regulator of the acto-myosin flow. They find that simultaneous depletion of AIR-1 and ECT-2 rescues the AIR-1 RNAi phenotype restoring the formation of a single PAR-2 domain. Moreover, by monitoring ECT-2 localisation upon polarity establishment, they find that AIR-1 RNAi results in persistent localisation of ECT-2 at the posterior cortex. These data support the idea that Aurora A spatially controls symmetry breaking through the displacement of ECT-2 from the posterior cortex.

Importance: a new working model for Aurora A activity in symmetry breaking:

The data from the preprints advance our knowledge of symmetry breaking and polarity establishment in the C. elegans zygote. This new research suggests that the system is able to self-organise polarity in the absence of functional centrosomes by exploiting areas of high membrane curvature. Nevertheless centrosomes contribute to the process: by controlling ECT-2 localisation, centrosomal AIR-1 provides spatial uniqueness to symmetry breaking by redirecting PAR-2 to only one side of the embryo. AIR-1 acts upstream of the small RHO-GEF ECT-2 and promotes its displacement from the posterior cortex (Figure 1B, B’). This in turn leads to local cortical relaxation and initiates a robust actin flow towards the anterior, pushing the anterior PAR complex to the opposite side, thereby ensuring the formation of a single A/P axis.

Figure 1: Representation of the sequential steps that lead to a unique A/P axis in the C. elegans zygote. A) Polarised C. elegans one-cell embryo. Upon fertilisation, a dramatic reorganisation results in the formation of a unique A/P axis characterised by the establishment of robust anterior and posterior PAR domains (in red and green, respectively). B, B’) Zoomed-in view of the posterior pole at the time of symmetry breaking. Centrosomal AIR-1 (in yellow) signals the posterior cortex (blue arrows) where ECT-2 (in orange) is uniformly distributed. Following AIR-1 activity, ECT-2 is displaced from the cortex and Myosin-II patches disassemble in the area, leading to cortical relaxation and formation of a region of high membrane curvature. Par-2 localises to this region (in green). Actin flow (black arrows) moves anteriorly, pushing the anterior PAR components in this direction.

Future directions and Questions to the authors:

  1. Previous work suggested that a pool of AIR-1 is present at the cell cortex. The Gönczy lab exploited the GFP-GBP system to address whether the kinase has any non-centrosomal function and suggested that AIR-1 at the cortex prevents unregulated symmetry breaking events from happening. How does the kinase localise at the cortex? Does it used the same binding mode/domain to localise at the centrosome? What are the targets of AIR-1 at the cortex? Presumably, cortical AIR-1 needs to be cleared solely from the posterior cortex to allow symmetry breaking. Can you speculate on how AIR-1 cortical localisation is fine-tuned?
  2. PAR-2 has high affinity for regions of high membrane curvature. Does PAR-2 bind these regions directly? From a structural point of view, does it have BAR domains? Do you think this is a feature shared with other PAR proteins?
  3. Is ECT-2 a direct target of AIR-1?
  4. Both preprints look at the role of the microtubule cytoskeleton in the establishment of polarity. Reduced number of astral microtubules (TBG-1 RNAi) or complete loss of microtubules (Nocadozole treatment) do not impair PAR-2 localisation to the cortex upon AIR-1 RNAi, reinforcing the idea that the system is able to self-organise polarity. However mutation of the PAR-2 microtubule binding motif completely abrogates its binding to the cortex upon AIR-1 RNAi, suggesting that in this context the presence of microtubules is way more detrimental for polarity establishment. To what extent does the microtubule cytoskeleton contribute to symmetry breaking? And how are the actin and microtubule networks integrated to ensure the formation of a single A/P axis?
  5. The role of the acto-myosin cytoskeleton in regulating polarity establishment and positioning of polarity markers has been tested and proved in other systems, such as the Drosophila neuroblast (Broadus and Doe, 1997; Hannaford et al., 2018). How conserved is the role of Aurora A in dictating symmetry breaking in other developmental contexts? And how relevant is it to physiopathological conditions?

References:

  • Rose L. and Gönczy P. – Polarity establishment, asymmetric division and segregation of fate determinants in early elegans embryos- December 30, 2014), WormBook, doi/10.1895/wormbook.1.30.2, http://www.wormbook.org.
  • Motegi F. and Sugimoto A. – Sequential functioning of the ECT-2 RhoGEF, RHO-1 and CDC-42 establishes cell polarity in Caenorhabditis elegans – Nature cell biology 8, 978 (Sep, 2006).
  • Zonies S. et al.- Symmetry breaking and polarization of the elegans zygote by the polarity protein PAR-2- Development 137, 1669 (May, 2010).
  • Broadus and Doe- Extrinsic cues, intrinsic cues and microfilaments regulate asymmetric protein localization in Drosophila neuroblasts- Current Biology 1997 (7)-11: 827-35
  • Hannaford MR et al.- aPKC-mediated displacement and actomyosin-mediated retention polarize Miranda in Drosophila neuroblasts- Elife, eLife. 2018; 7:e29939. doi:10.7554/eLife.29939.

 

Posted on: 9th September 2018

(No Ratings Yet)




  • Have your say

    Your email address will not be published. Required fields are marked *

    This site uses Akismet to reduce spam. Learn how your comment data is processed.

    Sign up to customise the site to your preferences and to receive alerts

    Register here

    Also in the cell biology category:

    Super-resolution Molecular Map of Basal Foot Reveals Novel Cilium in Airway Multiciliated Cells

    Quynh Nguyen, Zhen Liu, Rashmi Nanjundappa, et al.



    Selected by Robert Mahen

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Actomyosin-II facilitates long-range retrograde transport of large cargoes by controlling axonal radial contractility

    Tong Wang, Wei Li, Sally Martin, et al.



    Selected by Ivana Viktorinová

    Atlas of Subcellular RNA Localization Revealed by APEX-seq

    Furqan M Fazal, Shuo Han, Pornchai Kaewsapsak, et al.

    AND

    Proximity RNA labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules

    Alejandro Padron, Shintaro Iwasaki, Nicholas Ingolia



    Selected by Christian Bates

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Stable knockout and complementation of receptor expression using in vitro cell line derived reticulocytes for dissection of host malaria invasion requirements

    Timothy J Satchwell, Katherine E Wright, Katy L Haydn-Smith, et al.



    Selected by Alyson Smith

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    Activation of intracellular transport by relieving KIF1C autoinhibition

    Nida Siddiqui, Alice Bachmann, Alexander J Zwetsloot, et al.



    Selected by Ben Craske, Thibault Legal and Toni McHugh

    1

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Franco Iborra

    1

    Basal extrusion drives cell invasion and mechanical stripping of E-cadherin

    John Fadul, Gloria M Slattum, Nadja M Redd, et al.



    Selected by William Hill

    Ribosomal DNA and the rDNA-binding protein Indra mediate non-random sister chromatid segregation in Drosophila male germline stem cells

    George Watase, Yukiko Yamashita



    Selected by Maiko Kitaoka

    An F-actin shell ruptures the nuclear envelope by sorting pore-dense and pore-free membranes in meiosis of starfish oocytes

    Natalia Wesolowska, Pedro Machado, Celina Geiss, et al.



    Selected by Maiko Kitaoka

    1

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.



    Selected by Lorenzo Lafranchi

    Multi-color single molecule imaging uncovers extensive heterogeneity in mRNA decoding

    Sanne Boersma, Deepak Khuperkar, Bram M.P. Verhagen, et al.

    AND

    Live-cell single RNA imaging reveals bursts of translational frameshifting

    Kenneth R Lyon Jr, Luis U Aguilera, Tatsuya Morisaki, et al.



    Selected by Nicola Stevenson

    A non-canonical arm of UPRER mediates longevity through ER remodeling and lipophagy.

    Joseph R Daniele, Ryo Higuchi-Sanabria, Vidhya Ramachandran, et al.



    Selected by Sandra Malmgren Hill

    Microtubules Gate Tau Condensation to Spatially Regulate Microtubule Functions

    Ruensern Tan, Aileen J. Lam, Tracy Tan, et al.

    AND

    Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes

    Valerie Siahaan, Jochen Krattenmacher, Amayra Hernandez-Vega, et al.



    Selected by Satish Bodakuntla

    2

    Also in the developmental biology category:

    Single cell RNA-Seq reveals distinct stem cell populations that drive sensory hair cell regeneration in response to loss of Fgf and Notch signaling

    Mark E. Lush, Daniel C. Diaz, Nina Koenecke, et al.

    AND

    Distinct progenitor populations mediate regeneration in the zebrafish lateral line.

    Eric D Thomas, David Raible



    Selected by Rudra Nayan Das

    1

    Force inference predicts local and tissue-scale stress patterns in epithelia

    Weiyuan Kong, Olivier Loison, Pruthvi Chavadimane Shivakumar, et al.



    Selected by Sundar Naganathan

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Diana Pinheiro

    Unlimited genetic switches for cell-type specific manipulation

    Jorge Garcia-Marques, Ching-Po Yang, Isabel Espinosa-Medina, et al.



    Selected by Rafael Almeida

    1

    Applications, Promises, and Pitfalls of Deep Learning for Fluorescence Image Reconstruction

    Chinmay Belthangady , Loic A. Royer



    Selected by Romain F. Laine

    Maintenance of spatial gene expression by Polycomb-mediated repression after formation of a vertebrate body plan

    Julien Rougot, Naomi D Chrispijn, Marco Aben, et al.



    Selected by Yen-Chung Chen

    1

    The coordination of terminal differentiation and cell cycle exit is mediated through the regulation of chromatin accessibility

    Yiqin Ma, Daniel J McKay, Laura Buttitta



    Selected by Gabriel Aughey

    1

    Embryo geometry drives formation of robust signaling gradients through receptor localization

    Zhechun Zhang, Steven Zwick, Ethan Loew, et al.



    Selected by Paul Gerald L. Sanchez and Stefano Vianello

    Symmetry breaking in the embryonic skin triggers a directional and sequential front of competence during plumage patterning

    Richard Bailleul, Carole Desmarquet-Trin Dinh, Magdalena Hidalgo, et al.



    Selected by Alexa Sadier

    A SOSEKI-based coordinate system interprets global polarity cues in Arabidopsis

    Saiko Yoshida, Alja van der Schuren, Maritza van Dop, et al.



    Selected by Martin Balcerowicz

    1

    Suppressor of Fused controls perinatal expansion and quiescence of future dentate adult neural stem cells

    Hirofumi Noguchi, Jesse Garcia Castillo, Kinichi Nakashima, et al.



    Selected by Ekaterina Dvorianinova

    The embryonic transcriptome of Arabidopsis thaliana

    Falko Hofmann, Michael A Schon, Michael D Nodine



    Selected by Chandra Shekhar Misra

    1

    The cell wall regulates dynamics and size of plasma-membrane nanodomains in Arabidopsis.

    Joseph Franics McKenna, Daniel Rolfe, Stephen E D Webb, et al.



    Selected by Marc Somssich

    Psychiatric risk gene NT5C2 regulates protein translation in human neural progenitor cells

    Rodrigo R.R. Duarte, Nathaniel D. Bachtel, Marie-Caroline Cotel, et al.



    Selected by Joanna Cross

    A Scube2-Shh feedback loop links morphogen release to morphogen signaling to enable scale invariant patterning of the ventral neural tube

    Zach Collins, Kana Ishimatsu, Tony Tsai, et al.



    Selected by Teresa Rayon

    1

    Epiblast formation by Tead-Yap-dependent expression of pluripotency factors and competitive elimination of unspecified cells

    Masakazu Hashimoto, Hiroshi Sasaki



    Selected by Sarah Bowling, Teresa Rayon
    Close