Close

Live-cell imaging of marked chromosome regions reveals dynamics of mitotic chromosome resolution and compaction

John K Eykelenboom, Marek Gierlinski, Zuojun Yue, Nadia Hegarat, Hillary Pollard, Tatsuo Fukagawa, Helfrid Hochegger, Tomoyuki U Tanaka

Posted on: 15 May 2018

Preprint posted on 20 April 2018

Article now published in Journal of Cell Biology at http://dx.doi.org/10.1083/jcb.201807125

and

Quantitative imaging of chromatin decompaction in living cells

Elisa Dultz, Roberta Mancini, Guido Polles, Pascal Vallotton, Frank Alber, Karsten Weis

Posted on:

Preprint posted on 22 April 2018

Article now published in Molecular Biology of the Cell at http://dx.doi.org/10.1091/mbc.e17-11-0648

It takes two to (un)tangle: Dual Lac/Tet operator arrays report on chromatin dynamics in live cells

Selected by Carmen Adriaens, Dey Lab

By Gautam Dey and Carmen Adriaens

 

Interphase cell nuclei are compartmentalized into loose, transcribed euchromatin and compact, largely untranscribed heterochromatin. The consensus is that for a given gene to be transcribed, the active chromatin needs to decompact further through changes in the chromatin landscape. Another form of chromatin dynamics occurs during cell division. Indeed, to divide correctly, the DNA is neatly folded into an extreme state of compaction (the mitotic chromosome) after replication. In two recent independent studies, researchers have used a two-color live cell reporter system to study chromatid separation before and chromatin compaction during mitosis, and the process of decompaction upon transcriptional activation. Since the experimental setup is very similar, we will discuss these papers jointly and highlight the different insights obtained from this live cell imaging system.

 

The experimental setup

At a specific site in the genome, a lactose operon array (LacO) is integrated in the DNA. The repeats can be recognized by the Lac inhibitor protein (LacI), which is here overexpressed and tagged with a green fluorescent protein (GFP) to be visualized as a single dot per lacO in the cells. At another site in the DNA, a Tet operon, TetO, is integrated and its cognate protein (the Tet repressor, TetR) is tagged and visualized with the red fluorescent reporter mCherry. The two dots (green and red) can be followed using microscopy in live cells, to enable the monitoring and modeling of chromatin dynamics at high resolution in real time in different biological settings.

 

Figure 1: (A) Experimental set-up in human HT-1080 cells used by Eykelenboom et al. with sample images in (B), scale bar = 10 µm. (C) Experimental set-up in budding yeast used by Dultz et al. with sample images on the right. Taken from Figure 1 of Eykelenboom et al. 2018 and Figure 1 of Dultz et al. 2018 under Creative Commons CC-BY-4.0 licenses.

 

What are the papers about?

Eykelenboom et al. used CRISPR to integrate the Tet and Lac operator arrays separated by a 250 kb interval on one arm of chromosome 5 in HT-1080 human cells. Adding in a 4x-mCherry-tagged Tet repressor and an EGFP-tagged Lac repressor enabled them to follow dynamics of chromatid segregation and compaction throughout the unperturbed cell cycle in single cells. Imaging the 2 green and 2 red spots, representing the chromatids after replication, revealed 4 discernible states: non-resolved, partially resolved, resolved and compacted.

Surprisingly, cells begin to cycle between the partially resolved and unresolved states rather early in G2. This cycle is driven by an apparent antagonism between cohesin holding chromatids together on one hand, and WAPL trying to remove cohesin from the chromosome arms on the other. Exploiting a fortuitous side effect of the integration sites of their operator arrays, the authors showed that the timing of separation depends on the local cohesin concentration. Inhibiting topoisomerase II activity, and thereby preventing the resolution of DNA catenanes, caused partially resolved chromatids to revert to the unresolved state early in mitosis. Finally, the authors showed that condensin II depletion caused defects in sister chromatid separation, while condensin I depletion affected only the final compaction stage.

In a second paper, Dultz and colleagues used very similar experimental principles to study chromatin decompaction upon transcriptional activation. The authors integrated the LacO and TetO repeats on either side of the budding yeast GAL locus and studied chromatin dynamics by measuring distances between red and green dots in different conditions. In the absence of glucose and galactose, the locus is inactive, but derepressed. In the presence of glucose, the locus is actively repressed. In both scenarios, the distance between the dots was small, reflecting an inactive chromatin state. When, on the other hand, the cells were grown in or induced with galactose, the locus became highly active and the 3 linked genes (GAL7, GAL10 and GAL1) in the locus became transcribed. In this active state, the green and red dots lining the GAL locus on either side reversibly increased in distance, reminiscent of decompaction and transcriptional activation.

Next, the authors asked whether these observations are dependent specifically on either spatial or linear decompaction. Spatial decompaction is primarily mediated by post-translational modifications of the histones and hence manipulation of nucleosome-nucleosome interactions, whereas in linear decompaction the wrapping density changes through eviction and remodeling of nucleosomes at the site of transcription. They found that a change in histone modifications, and, by extension, inter-nucleosomal interactions, does not dramatically alter the decompaction dynamics. Conversely, both manipulation of transcription itself and nucleosomal density do.

These observations led to the hypothesis that decompaction of chromatin is principally mediated by the number of nucleosomes evicted. To test this, the authors set up an exogenous reporter system 10 kb upstream of the original locus and measured changes in distances between dots when no, one, or two open reading frames were present. In this way, they found that the extent of decompaction indeed correlates with the length of the transcribed region. Finally, the authors concluded that although decompaction is transcription dependent, the inverse isn’t necessarily true: cells can continue to transcribe the GAL locus even in the absence of significant changes in distances between the two reporter dots.

 

Takeaways and questions for the future

It’s a very exciting time for the field of chromatin reorganization and dynamics! To take just one example, new experimental approaches have validated an old molecular model for condensin function1 and mapped a pathway to mitotic chromosome organization mediated by condensin I and II2. In parallel, a proliferation of live cell reporters have uncovered layers of cell cycle regulation that were hitherto invisible to bulk assays3,4. Taken together, these advances represent the perfect storm to preface an analysis of chromosome dynamics in single cells as they progress through the cell cycle.

The most surprising finding from the first paper (Eykelenboom et al.) is that chromosomes cycle between unresolved and partially resolved states through most of their G2 phase, driven by an apparent concentration-dependent antagonism between cohesin and WAPL.

What then is the purpose of this (futile?) cycle, and how is it broken during prophase? Saturated feedback loops of this type can be used to generate switch-like responses (also termed zero-order ultrasensitivity5). In turn, then, one could ask: is it necessary to have a switch-like transition between unresolved and resolved chromatids during prophase?

Moreover, the authors’ observations complement other recent work2 helping to resolve long-standing questions in the field about the individual and collective roles of the two condensin complexes.

It has long been recognized that actively transcribed chromatin is less compact than inactive chromatin, and much is known about the packaging and histone modifications responsible for these states. However, being able to visualize actual decompaction directly in live cells is impressive: Dultz et al. leverage the ultra-simplicity of the experimental setup to reveal the solution of the chicken-and-egg problem of loose chromatin during transcription.

Yet, there may be some caveats to these experiments as well: because the GAL locus is highly active when growing in galactose and the regulation of the system is rather unique compared to the rest of the yeast genome (ON/OFF), these observations may confer a local rather than a global rule. The physical decompaction (i.e. the increase in physical distance between the two arrays) in other loci may not be as striking as here, and will potentially be more difficult to study.

Furthermore, we note that both studies employ population averaging to draw certain conclusions, faced with high levels of cell-to-cell variability. Other recent work6 shows that chromosomal contacts observed by high-throughput sequencing approaches such as Hi-C occur as infrequently as in ~10% of cells only (as observed by microscopy), highlighting the extraordinary differences even within relatively homogenous or synchronized populations of cells. Additional work will be required to understand the sources of this variability and its functional consequences, if any.

 

References

  1. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).
  2. Gibcus, J. H. et al. A pathway for mitotic chromosome formation. Science 359, eaao6135 (2018).
  3. Chao, H. X. et al. Evidence that the cell cycle is a series of uncoupled, memoryless phases. bioRxiv 283614 (2018). doi:10.1101/283614
  4. Spencer, S. L. et al. The Proliferation-Quiescence Decision Is Controlled by a Bifurcation in CDK2 Activity at Mitotic Exit. Cell 155, 369–383 (2013).
  5. Ferrell, J. E. & Ha, S. H. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem. Sci. 39, 496–503 (2014).
  6. Finn, E. et al. Heterogeneity and Intrinsic Variation in Spatial Genome Organization. biorXiv (2017). doi: https://doi.org/10.1101/171801

 

Tags: cell cycle, chromatin dynamics, live cell imaging, teamwork makes the dream work, transcription

(No Ratings Yet)

Have your say

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Sign up to customise the site to your preferences and to receive alerts

Register here

Also in the bioengineering category:

Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water

Adebayo J. Bello, Omorilewa B. Ebunoluwa, Rukayat O. Ayorinde, et al.

Selected by 14 November 2024

Safieh Shah, Benjamin Dominik Maier

Epidemiology

Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane

Einollah Sarikhani, Vrund Patel, Zhi Li, et al.

Selected by 23 September 2024

Sristilekha Nath

Bioengineering

Scalable and efficient generation of mouse primordial germ cell-like cells

Xinbao Ding, Liangdao Li, Jingyi Gao, et al.

Selected by 05 March 2024

Carly Guiltinan

Cell Biology

Also in the biophysics category:

Motor Clustering Enhances Kinesin-driven Vesicle Transport

Rui Jiang, Qingzhou Feng, Daguan Nong, et al.

Selected by 16 November 2024

Sharvari Pitke

Biophysics

Global coordination of protrusive forces in migrating immune cells

Patricia Reis-Rodrigues, Nikola Canigova, Mario J. Avellaneda, et al.

Selected by 10 October 2024

yohalie kalukula

Biophysics

Engineered Nanotopographies Induce Transient Openings in the Nuclear Membrane

Einollah Sarikhani, Vrund Patel, Zhi Li, et al.

Selected by 23 September 2024

Sristilekha Nath

Bioengineering

Also in the cell biology category:

Motor Clustering Enhances Kinesin-driven Vesicle Transport

Rui Jiang, Qingzhou Feng, Daguan Nong, et al.

Selected by 16 November 2024

Sharvari Pitke

Biophysics

Cellular signalling protrusions enable dynamic distant contacts in spinal cord neurogenesis

Joshua Hawley, Robert Lea, Veronica Biga, et al.

Selected by 15 November 2024

Ankita Walvekar

Developmental Biology

Green synthesized silver nanoparticles from Moringa: Potential for preventative treatment of SARS-CoV-2 contaminated water

Adebayo J. Bello, Omorilewa B. Ebunoluwa, Rukayat O. Ayorinde, et al.

Selected by 14 November 2024

Safieh Shah, Benjamin Dominik Maier

Epidemiology

Also in the molecular biology category:

Non-disruptive inducible labeling of ER-membrane contact sites using the Lamin B Receptor

Laura Downie, Nuria Ferrandiz, Megan Jones, et al.

Selected by 15 October 2024

Jonathan Townson

Cell Biology

HIF1A contributes to the survival of aneuploid and mosaic pre-implantation embryos

Estefania Sanchez-Vasquez, Marianne E. Bronner, Magdalena Zernicka-Goetz

Selected by 11 October 2024

Anchel De Jaime Soguero

Developmental Biology

The RNA binding protein HNRNPA2B1 regulates RNA abundance and motor protein activity in neurites

Joelle Lo, Katherine F. Vaeth, Gurprit Bhardwaj, et al.

Selected by 24 September 2024

Felipe Del Valle Batalla

Neuroscience

Also in the cell biology category:

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

preLights peer support – preprints of interest

This is a preprint repository to organise the preprints and preLights covered through the 'preLights peer support' initiative.

 



List by preLights peer support

The Society for Developmental Biology 82nd Annual Meeting

This preList is made up of the preprints discussed during the Society for Developmental Biology 82nd Annual Meeting that took place in Chicago in July 2023.

 



List by Joyce Yu, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

Journal of Cell Science meeting ‘Imaging Cell Dynamics’

This preList highlights the preprints discussed at the JCS meeting 'Imaging Cell Dynamics'. The meeting was held from 14 - 17 May 2023 in Lisbon, Portugal and was organised by Erika Holzbaur, Jennifer Lippincott-Schwartz, Rob Parton and Michael Way.

 



List by Helen Zenner

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

Fibroblasts

The advances in fibroblast biology preList explores the recent discoveries and preprints of the fibroblast world. Get ready to immerse yourself with this list created for fibroblasts aficionados and lovers, and beyond. Here, my goal is to include preprints of fibroblast biology, heterogeneity, fate, extracellular matrix, behavior, topography, single-cell atlases, spatial transcriptomics, and their matrix!

 



List by Osvaldo Contreras

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

Planar Cell Polarity – PCP

This preList contains preprints about the latest findings on Planar Cell Polarity (PCP) in various model organisms at the molecular, cellular and tissue levels.

 



List by Ana Dorrego-Rivas

BioMalPar XVI: Biology and Pathology of the Malaria Parasite

[under construction] Preprints presented at the (fully virtual) EMBL BioMalPar XVI, 17-18 May 2020 #emblmalaria

 



List by Dey Lab, Samantha Seah

1

Cell Polarity

Recent research from the field of cell polarity is summarized in this list of preprints. It comprises of studies focusing on various forms of cell polarity ranging from epithelial polarity, planar cell polarity to front-to-rear polarity.

 



List by Yamini Ravichandran

TAGC 2020

Preprints recently presented at the virtual Allied Genetics Conference, April 22-26, 2020. #TAGC20

 



List by Maiko Kitaoka et al.

3D Gastruloids

A curated list of preprints related to Gastruloids (in vitro models of early development obtained by 3D aggregation of embryonic cells). Updated until July 2021.

 



List by Paul Gerald L. Sanchez and Stefano Vianello

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

EMBL Seeing is Believing – Imaging the Molecular Processes of Life

Preprints discussed at the 2019 edition of Seeing is Believing, at EMBL Heidelberg from the 9th-12th October 2019

 



List by Dey Lab

Autophagy

Preprints on autophagy and lysosomal degradation and its role in neurodegeneration and disease. Includes molecular mechanisms, upstream signalling and regulation as well as studies on pharmaceutical interventions to upregulate the process.

 



List by Sandra Malmgren Hill

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

Cellular metabolism

A curated list of preprints related to cellular metabolism at Biorxiv by Pablo Ranea Robles from the Prelights community. Special interest on lipid metabolism, peroxisomes and mitochondria.

 



List by Pablo Ranea Robles

BSCB/BSDB Annual Meeting 2019

Preprints presented at the BSCB/BSDB Annual Meeting 2019

 



List by Dey Lab

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra

ASCB/EMBO Annual Meeting 2018

This list relates to preprints that were discussed at the recent ASCB conference.

 



List by Dey Lab, Amanda Haage

Also in the molecular biology category:

2024 Hypothalamus GRC

This 2024 Hypothalamus GRC (Gordon Research Conference) preList offers an overview of cutting-edge research focused on the hypothalamus, a critical brain region involved in regulating homeostasis, behavior, and neuroendocrine functions. The studies included cover a range of topics, including neural circuits, molecular mechanisms, and the role of the hypothalamus in health and disease. This collection highlights some of the latest advances in understanding hypothalamic function, with potential implications for treating disorders such as obesity, stress, and metabolic diseases.

 



List by Nathalie Krauth

BSCB-Biochemical Society 2024 Cell Migration meeting

This preList features preprints that were discussed and presented during the BSCB-Biochemical Society 2024 Cell Migration meeting in Birmingham, UK in April 2024. Kindly put together by Sara Morais da Silva, Reviews Editor at Journal of Cell Science.

 



List by Reinier Prosee

‘In preprints’ from Development 2022-2023

A list of the preprints featured in Development's 'In preprints' articles between 2022-2023

 



List by Alex Eve, Katherine Brown

CSHL 87th Symposium: Stem Cells

Preprints mentioned by speakers at the #CSHLsymp23

 



List by Alex Eve

9th International Symposium on the Biology of Vertebrate Sex Determination

This preList contains preprints discussed during the 9th International Symposium on the Biology of Vertebrate Sex Determination. This conference was held in Kona, Hawaii from April 17th to 21st 2023.

 



List by Martin Estermann

Alumni picks – preLights 5th Birthday

This preList contains preprints that were picked and highlighted by preLights Alumni - an initiative that was set up to mark preLights 5th birthday. More entries will follow throughout February and March 2023.

 



List by Sergio Menchero et al.

CellBio 2022 – An ASCB/EMBO Meeting

This preLists features preprints that were discussed and presented during the CellBio 2022 meeting in Washington, DC in December 2022.

 



List by Nadja Hümpfer et al.

EMBL Synthetic Morphogenesis: From Gene Circuits to Tissue Architecture (2021)

A list of preprints mentioned at the #EESmorphoG virtual meeting in 2021.

 



List by Alex Eve

FENS 2020

A collection of preprints presented during the virtual meeting of the Federation of European Neuroscience Societies (FENS) in 2020

 



List by Ana Dorrego-Rivas

ECFG15 – Fungal biology

Preprints presented at 15th European Conference on Fungal Genetics 17-20 February 2020 Rome

 



List by Hiral Shah

ASCB EMBO Annual Meeting 2019

A collection of preprints presented at the 2019 ASCB EMBO Meeting in Washington, DC (December 7-11)

 



List by Madhuja Samaddar et al.

Lung Disease and Regeneration

This preprint list compiles highlights from the field of lung biology.

 



List by Rob Hynds

MitoList

This list of preprints is focused on work expanding our knowledge on mitochondria in any organism, tissue or cell type, from the normal biology to the pathology.

 



List by Sandra Franco Iborra
Close